Chaabane mounir

2h

3 info

Exercice: N°1 (4 points)

1- Cocher les bonnes réponses

Soit la fonction f définie par $f(x) = x^2 - 3x + 2$

- a) D_f=IR
- b) L'image de «1 » est « 0 »
- c) M (2,0) \in f

2- Soit la suite $U_{n+1}=3+U_n$ et $U_0=2$

 $a/U_n=3^n \times 2$

 $b/U_n=3n+2$

 $c/U_2=18$

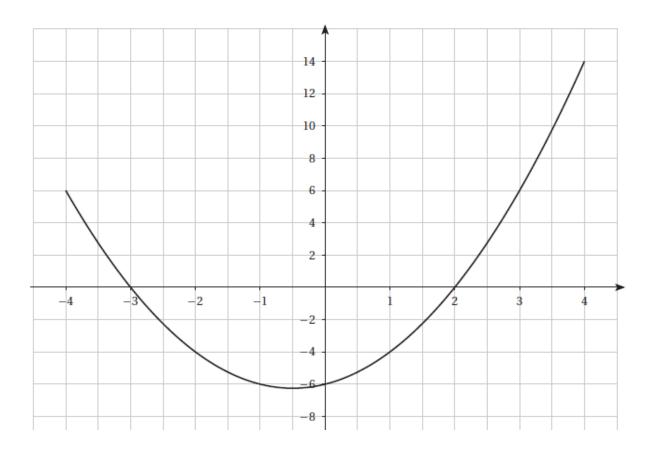
- 3- a) $\cos 2a = \cos^2 a + \sin^2 a$
- b) $\cos 2a = 2\cos^2 + 1$
- c) $\cos 2a = 1 + \sin^2 a$

- 4- a) $\cos 3x = \cos 2x \cdot \cos x + \sin 2x \cdot \sin x$
- b) $\cos 3x = \cos 2x \cdot \cos x \sin 2x \cdot \sin x$

Exercice n°2(5 points)

- a) Montrer que, pour tout réel x, on a $cos(3x) = 4cos^3 x 3cos x$
- b) En déduire que, pour tout réel x, on a : $\cos(3x) + \cos(2x) + \cos x = 4\cos^3 x + 2\cos^2 x 2\cos x 1$
- c) Résoudre dans \mathbb{R} l'équation $4X^3 + 2X^2 2X 1 = 0$ (on pourra remarquer que $-\frac{1}{2}$ en est une solution).
- d) En déduire la résolution dans \mathbb{R} de l'équation $\cos(3x) + \cos(2x) + \cos x = 0$.

Exercice N^o 3(6 points)


Soit (U_n) la suite définie sur IN par :
$$\begin{cases} U_0 = -2 \\ U_{n+1} = \frac{2}{3} \ U_n - 1 \end{cases}$$

- 1) a) Calculer U_1 et U_2 .
 - b) Justifier alors que la suite (U_n) n'est ni arithmétique ni géométrique.
- 2) Soit la suite (V_n) définie sur IN par $V_n = U_n + 3$.
 - a) Montrer que la suite (V_n) est une suite géométrique de raison $\frac{2}{3}$.
 - b) Calculer V_n en fonction de n.
 - c) En déduire que pour tout entier naturel n on a : $U_n = (\frac{2}{3})^n 3$
 - d) Calculer $\lim_{n \to +\infty} U_n$

Exercice N°4(5 points)

On considéré la fonction f définie sur l'intervalle [-4,4] par $f(x) = x^2 + x - 6$

La représentation graphique C_f de cette fonction est donnée ci-dessous

- 1. En faisant apparaître les traits de construction, utiliser le graphique pour :
 - a. donner les images de 0 et 2
 - **b.** donner les antécédents éventuels de 6 et −4
 - **c.** résoudre l'équation f(x) = 6.
- **2.** Dresser le tableau de variation de f.
- 3. Dans cette question, il s'agit de justifier les résultats à l'aide de calculs.
 - **a.** Sachant que la fonction f atteint son minimum en $\frac{-1}{2}$, Calculer la valeur de ce minimum.
 - **b.** Calculer les antécédents éventuels de −6.
 - **c.** Montrer que f(x) est égal au produit (x-2)(x+3).
- **4.** Résoudre l'inéquation $f(x) \le 0$. Le résultat est-il cohérent avec le graphique ? (Expliquer)

