Novembre 2015

Mr:Khammour.K

(U_n) suite arithmétique de raison r	$\mathbf{U}_{n+1} - \mathbf{U}_n = r$
Relation entre deux termes quelconques Terme général (Relation entre U_n et n)	$\mathbf{U}_n - \mathbf{U}_p = (n - p)r$
	$U_n = U_0 + n \times r$ si U_0 est le premier terme de la suite
Somme $U_0 + U_1 + \dots + U_{n-1} = \sum_{k=0}^{n-1} U_k$	$\overline{k=0}$
	Nombre de termes $\frac{\text{Nombre de termes}}{2} \left(1^{er} \text{terme} + \text{dernier terme}\right) = \frac{n}{2} \left(U_{n-1} + U_0\right)$

Suite géométrique :

(U_n) suite géométrique de raison q	$\mathbf{U}_{n+1} = \mathbf{q}\mathbf{U}_n$
Terme général (Relation entre U_n et n)	$\mathbf{U}_{n}=\mathbf{U}_{p}q^{(n-p)}$
	$U_n = U_0 q^n$ si U_0 est le premier terme de la suite
Somme $U_0 + U_1 + \dots + U_{n-1} = \sum_{k=0}^{n-1} U_k$	$\sum_{k=0}^{n-1} \mathbf{U}_k = 1^{er} \text{ terme} \times \frac{1 - q^{\text{(Nombre de termes)}}}{1 - q} = \mathbf{U}_0 \times \frac{1 - q^n}{1 - q}$

❖ Propriétés sur la ∑

$$ightharpoonup \sum_{k \in I} (\alpha U_k) = \alpha \sum_{k \in I} (U_k) \text{ où } \alpha \in \text{IR} .$$

$$\sum_{k \in I} \alpha = \alpha \times (\text{nombre d'éléments de I})$$

- > nombre d'éléments de $\sum_{k=p}^{n} U_k = n p + 1 =$ dernier indice -1^{er} indice +1
- ightharpoonup Si on a: $U_n \le V_n$ alors $\sum_{k \in I} (U_k) \le \sum_{k \in I} (V_k)$.

Suites monotones :

- \triangleright (U_n) est croissante sur I ssi $U_{n+1} U_n \ge 0$ pour tout $n \in I$.
- $ightharpoonup (U_n)$ est décroissante sur I ssi $U_{n+1} U_n \le 0$ pour tout $n \in I$.
- \triangleright (U_n) est croissante sur I ssi $U_{n+1}=U_n$ pour tout $n \in I$.

Remarque:

Pour étudier la monotonie d'une suite (croissante ou décroissante)

- On étudie le signe de $U_{n+1} U_n$.
- Quand $U_n > 0$, on compare $\frac{U_{n+1}}{U_n}$ par 1.
- Quand $U_{n+1} = f(U_n)$, On compare f(x) et x.

❖ Suite majorée – minorée – bornée :

Soit (U_n) est définie sur I.

 $ightharpoonup \left(\mathbf{U}_n \right)$ est majorée s'il existe un réel M tel que pour tout $n \in \mathbf{I}$ $\mathbf{U}_n \leq M$.

- $ightharpoonup \left(\mathbf{U}_{n} \right)$ est minorée s'il existe un réel m tel que $\mathbf{U}_{n} \geq m$ pour tout $n \in \mathbf{I}$.
- \triangleright (U_n) est bornée s'il existe deux réels m et M tels que $m \le U_n \le M$ pour tout $n \in I$.

Remarque:

Pour démonter qu'une suite est majorée ou minorée ou bornée on utilise en général la raisonnement par récurrence.

Exemple: Montrons que pour tout $n \in I$, $a \le U_n \le b$.

- $\underline{1}^{\text{ère}}$ étape : Vérifions pour $n = n_0$, $a \le U_{n_0} \le b$.
- $2^{\text{ème}}$ étape : Supposons que $a \le U_n \le b$ Démontrons que $a \le U_{n+1} \le b$.

<u>1ère</u> méthode : Encadrement, on part de $a \le U_n \le b$ et on démontre que $a \le U_{n+1} \le b$.

 $\underline{2^{\mathrm{\grave{e}me}}\ \mathrm{m\acute{e}thode}:}\ \mathrm{Diff\acute{e}rence}\ ,\ \mathrm{on}\ \mathrm{d\acute{e}montre}\ \mathrm{que}\quad \mathrm{U}_{\scriptscriptstyle n+1}-b\leq 0\ \ \mathrm{et}\ \mathrm{que}\ \ \mathrm{U}_{\scriptscriptstyle n+1}-a\geq 0\ .$

 $\underline{3^{\text{ème}} \text{ méthode}}$: Variation de la fonction f si $U_{n+1} = f(U_n)$.

- Si f est croissante $a \le U_n \le b$ alors $f(a) \le f(U_n) \le f(b)$.
- Si f est croissante $a \le U_n \le b$ alors $f(b) \le f(U_n) \le f(a)$.

Suites convergentes :

- ➤ Une suite est convergente si elle admet une limite finie lorsque n tend vers $+\infty$ $\lim_{n \to +\infty} (U_n) = l \iff \lim_{n \to +\infty} (U_n l) = 0.$
- Toute suite convergente est bornée (La réciproque est fausse : <u>exemple</u> : $U_n = (-1)^n$ est bornée mais n'est pas convergente)
- Règle de convergence des suites monotones :
 - Toute suite croissante et majorée est convergente.
 - Toute suite décroissante et minorée est convergente.

1 ^{er} hypothèse à partir d'un certain rang	2 ^{ème} hypothèse	Conclusion
	comportement en +∞	
$V_n \le U_n \le W_n$	$\lim_{n \to +\infty} (W_n) = \lim_{n \to +\infty} (V_n) = l$	(U_n) est convergente et
		$\lim_{n\to+\infty} (U_n) = l$
$ \mathbf{U}_n \leq V_n $	$\lim_{n\to+\infty} (V_n) = 0$	(U_n) est convergente et
		$\lim_{n\to+\infty} (U_n) = 0$
$a \le \mathbf{U}_n \le b$	$\lim_{n\to+\infty} (U_n) = l$	$a \le l \le b$
$U_n \leq V_n$	$\lim_{n\to+\infty} (U_n) = l \text{ et } \lim_{n\to+\infty} (V_n) = l'$	$l \leq l$ '
$U_n \leq V_n$	$\lim_{n\to+\infty} (V_n) = -\infty$	$\lim_{n\to+\infty} (U_n) = -\infty$
$V_n \leq U_n$	$\lim_{n\to+\infty} (V_n) = +\infty$	$\lim_{n\to+\infty} (U_n) = +\infty$

• Recherche de la limite d'une suite : $U_{n+1} = f(U_n)$

• Si
$$\begin{cases} U_n \in D \\ \text{f est continue sur D} \quad \text{alors} \quad f(l) = l \\ U_n \text{ est convergente vers } l \end{cases}$$

Si -1 < q < 1	$\lim_{n\to+\infty} \left(q^n\right) = 0$
Si q >1	$\lim_{n\to+\infty} (q^n) = +\infty$
Si q ≤ −1	Pas de limite

Suites adjacentes :

- > Deux suites U et V sont adjacentes lorsqu'elles vérifient :
 - $U_n \leq V_n$.
 - (U_n) est croissante et (V_n) est décroissante.
 - $\lim_{n\to+\infty} (U_n V_n) = 0$.
- > Deux suites adjacentes sont convergentes et ont la même limite.

Exercice d'application:

Soit a et b deux nombres réels vérifiant 0 < a < b. On définies les suites (U_n) et (V_n) par :

$$U_0 = a, V_0 = b, U_{n+1} = \frac{2U_n V_n}{U_n + V_n}, V_{n+1} = \frac{U_n + V_n}{2}$$

- 1) Vérifier que $\left(U_{\scriptscriptstyle n}\right)$ et $\left(V_{\scriptscriptstyle n}\right)$ sont strictement positives.
- 2) On pose pour tout entier naturel n $T_n = U_n V_n$.
 - a) Montrer que pour tout entier n , $T_n\!>\!\!0$ puis $0\!<\!T_{_{n+1}}\!<\!\frac{1}{2}T_{_n}$.
 - b) En déduire par récurrence que, pour tout entier naturel n , on a : $0 < T_n < \frac{b-a}{2^n}$.
- 3) Démontrer alors que les suites $\left(U_{\scriptscriptstyle n}\right)$ et $\left(V_{\scriptscriptstyle n}\right)$ sont adjacentes.