Forme: $-\infty + \infty$ Si f est une fonction polynôme de monôme du plus haut degré $a_x x^*$: $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} a_x x^*$ \Leftrightarrow Si f est une fonction irrationnelle: • On multiplie par l'expression conjuguée si la somme des termes dominant égaux à 0 . • On factorise si la somme des termes dominant différents de 0 . Forme $0 \times \infty$; ∞ \Leftrightarrow Si f est une fonction rationnelle de monôme du plus haut degré $a_x x^*$ au numérateur et $b_p x^p$ au dénominateur: $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left(\frac{a_x x^*}{b_p x^p}\right)$. \Leftrightarrow Si f est une fonction irrationnelle on factorise. Forme: $\lim_{x \to \infty} f(x) = 0$ \Leftrightarrow Si f est une fonction irrationnelle on factorise. Si f est une fonction irrationnelle on factorise par $(x - a)$ en utilisant les produits remarquables ou le trinôme $\alpha^2 + bx + c = a(x - x^*)(x - x^*)$. \Leftrightarrow Si f est une fonction irrationnelle on multiplie par l'expression conjuguée. Etudier la continuité de f On cherche $\lim_{x \to \infty} f(x)$ et la comparer avec $f(x_0)$. \Leftrightarrow Si f est une fonction irrationnelle on multiplie par l'expression conjuguée. Etudier la continuité de f On cherche $\lim_{x \to \infty} f(x)$ et la comparer avec $f(x_0)$. \Leftrightarrow Si f est une fonction irrationnelle on multiplie par l'expression conjuguée. Etudier la continuité de f On cherche $\lim_{x \to \infty} f(x)$ et la comparer avec $f(x_0)$. \Leftrightarrow Si f est une fonction irrationnelle on multiplie par l'expression conjuguée. Etudier la continuité de f On cherche $\lim_{x \to \infty} f(x)$ et la comparer avec $f(x_0)$. \Leftrightarrow Si f est une fonction irrationnelle on multiplie par l'expression conjuguée. Etudier la continuité de f on f on the remain f on the partition f of the produit, rapport, composé		
$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} a_x x^x$ $\Rightarrow \text{ Si } f \text{ est une fonction irrationnelle } :$ $\bullet \text{ On multiplic par } l'\text{expression conjuguée si la somme des termes dominant } \frac{\epsilon_{\text{gaux}}}{\epsilon_{\text{gaux}}} \text{ a.} $ $\bullet \text{ On factorise si la somme des termes dominant différents de } 0.$ $\text{Forme } 0 \times \infty; \frac{\infty}{\infty}$ $\Rightarrow \text{ Si } f \text{ est une fonction rationnelle de monôme du plus haut degré } a_n x^n \text{ au numérateur et } b_p x^n \text{ au dénominateur } : \lim_{x\to\infty} f(x) = \lim_{x\to\infty} \left(\frac{a_n x^n}{b_p x^n}\right).$ $\Rightarrow \text{ Si } f \text{ est une fonction irrationnelle } : \text{ on factorise.}$ $\Rightarrow \text{ Si } f \text{ est une fonction rationnelle on factorise par } (x-a) \text{ en utilisant les produits remarquables ou le trinôme } ax^2 + bx + c = a(x-x^*)(x-x^*).$ $\Rightarrow \text{ Si } f \text{ est une fonction irrationnelle on multiplic par l'expression conjuguée.}$ $\text{Etudier la continuité } de f \text{ en } x_n.$ $\Rightarrow \text{ On cherche } \lim_{x\to\infty} f(x) \text{ et la comparer avec } f(x_n).$ $\Rightarrow \text{ On cherche } \lim_{x\to\infty} f(x) \text{ et la comparer avec } f(x_n).$ $\Rightarrow \text{ Produit } f \text{ and } f(x) \text{ et also } f($	Questions	Comment réagir
	Forme: $-\infty + \infty$	Si f est une fonction polynôme de monôme du plus haut degré $a_n x^n$:
		$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} a_n x^n$
Forme $0 \times \infty$; $\frac{1}{\infty}$ Si f est une fonction rationnelle de monôme du plus haut degré $a_n x^n$ au numérateur et $b_p x^p$ au dénominateur : $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left(\frac{a_k x^n}{b_p x^p}\right)$. Si f est une fonction irrationnelle : on factorise. Forme : $\lim_{x \to \infty} f(x) = \frac{0}{0}$ Si f est une fonction irrationnelle : on factorise par $(x - a)$ en utilisant les produits remarquables ou le trinôme $ax^2 + bx + c = a(x - x^n)(x - x^n)$. Si f est une fonction irrationnelle on multiplic par l'expression conjuguée. Etudier la continuité d on cherche $\lim_{x \to \infty} f(x)$ et la comparer avec $f(x_0)$. Si f est une fonction irrationnelle on multiplic par l'expression conjuguée. Province \sqrt{f} est expression conjuguée. Somme , produit , rapport , composé) Montrer que \sqrt{f} est est ontinue sur I. \sqrt{f} f continue sur I. \sqrt{f} f continue sur J. \sqrt{f} f f continue sur J. \sqrt{f} f		
Forme $0 \times \infty; \frac{\infty}{\infty}$ Si f est une fonction rationnelle de monôme du plus haut degré $a_n x^n$ au numérateur et $b_p x^p$ au dénominateur : $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left(\frac{a_k x^n}{b_p x^p}\right)$. Si f est une fonction irrationnelle : on factorise. Forme : $\lim_{x \to \infty} f(x) = \frac{0}{0}$ Si f est une fonction irrationnelle : on factorise. Forme : $\lim_{x \to \infty} f(x) = \frac{0}{0}$ Si f est une fonction rationnelle on factorise par $(x - a)$ en utilisant les produits remarquables ou le trinôme $ax^2 + bx + c = a(x - x)(x - x^n)$. Si f est une fonction irrationnelle on multiplie par l'expression conjuguée. Etudier la continuité de f en x_0 . Déterminer domaine de continuité de f est continue sur f . Montrer que \sqrt{f} est continue sur f . f f continue sur f . f gontinue sur f . f f continue sur f . f		On multiplie par l'expression conjuguée si la somme des termes dominant
Forme $0 \times \infty; \frac{\infty}{\infty}$ \Rightarrow Si f est une fonction rationnelle de monôme du plus haut degré $a_n x^n$ au numérateur et $b_p x^p$ au dénominateur : $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left(\frac{a_n x^n}{b_p x^p}\right)$. \Rightarrow Si f est une fonction irrationnelle on factorise. Forme : $\lim_{x \to \infty} f(x) = \frac{0}{0}$ \Rightarrow Si f est une fonction rationnelle on factorise par $(x - a)$ en utilisant les produits remarquables ou le trinôme $ax^2 + bx + c = a(x - x^*)(x - x^n)$. \Rightarrow Si f est une fonction irrationnelle on multiplie par l'expression conjuguée. Etudier la continuité d f on cherche $\lim_{x \to \infty} f(x)$ et la comparer avec $f(x_0)$. \Rightarrow Rédaction en utilisant les opérations sur les fonctions continues de continuité d f continue sur I. \Rightarrow g (f [a , b]] = f (a , b], f est croissante sur f (a , b]. Montrer que f (f) = f) admet une solution unique a sur I et que $a \in [a,b[$ Montrer que f (f) = f (f) = f (f) = f (f) (respectivement f) (resp f (f) × f (f) (resp f) (f) (f) (resp f) (f		
numérateur et $b_p x^p$ au dénominateur : $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left(\frac{a_x x^n}{b_p x^p}\right)$. Si f est une fonction irrationnelle : on factorise par $(x-a)$ en utilisant les produits remarquables ou le trinôme $ax^2 + bx + c = a(x-x')(x-x'')$. Si f est une fonction irrationnelle on multiplie par l'expression conjuguée. Etudier la continuité de f en x_0 . On cherche $\lim_{x \to \infty} f(x)$ et la comparer avec $f(x_0)$. Péterminer domaine de continuité de f est continue sur f is f est continue sur f est f est continue sur f est f est entinue sur f est f est entinue sur f est f est entinue sur f est entinue sur f est f entinue sur f est ent		• On factorise si la somme des termes dominant différents de 0.
numérateur et $b_p x^p$ au dénominateur : $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left(\frac{a_n x^n}{b_p x^p}\right)$. Si f est une fonction irrationnelle : on factorise par $(x-a)$ en utilisant les produits remarquables ou le trinôme $ax^2 + bx + c = a(x-x^*)(x-x^*)$. Si f est une fonction irrationnelle on factorise par $(x-a)$ en utilisant les produits remarquables ou le trinôme $ax^2 + bx + c = a(x-x^*)(x-x^*)$. Si f est une fonction irrationnelle on multiplic par f expression conjuguée. Etudier la continuité f on cherche f important f in f (f) et a comparer avec f (f). Déterminer domaine de continuité f of continue sur f est continue sur f . Montrer que f est continue sur f . Montrer que f est f continue sur f . f f continue sur f . f f continue sur f est une fonction continue sur f est une fonction f est f est entine f est f	Forme $0 \times \infty; \frac{\infty}{\infty}$	Si f est une fonction rationnelle de monôme du plus haut degré $a_n x^n$ au
Forme: $\lim_{x \to a} f(x) = \frac{0}{0}$ Solution is a sum of the sum o		numérateur et $b_p x^p$ au dénominateur : $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \left(\frac{a_n x^n}{b_p x^p} \right)$.
produits remarquables ou le trinôme $ax^2 + bx + c = a(x - x')(x - x'')$. Si f est une fonction irrationnelle on multiplie par l'expression conjuguée. Etudier la continuité de f on cherche $\lim_{x \to \infty_0} f(x)$ et la comparer avec $f(x_0)$. Déterminer domaine de continuité de f Montrer que \sqrt{f} est continue sur I . Montrer que f og est continue sur I . f f continue sur f . Déterminer f (f f est f continue sur f f f continue sur f f f continue sur f f f f continue sur f f f f continue sur f f f f f continue sur f		\bullet Si f est une fonction irrationnelle : on factorise.
Etudier la continuité de f on cherche $\lim_{x \to x_0} f(x)$ et la comparer avec $f(x_0)$. Déterminer domaine de continue sur I. Montrer que f est continue sur I. $f(x) \ge 0$ pour tout $x \in I$. Déterminer $f([a,b])$ ou f est une fonction $f([a,b]) = [f(a,b]) = [f(a,b]) = [f(a,b]) = [f(b), f(a)]$ si f est décroissante sur $f([a,b])$. Montrer que $f(x) = k$ (respectivement $f(x) = k$ admet une solution unique $f(x) = k$ are $f(x) = k$ (respective ment $f(x) = k$ and $f(x) = k$ (respective ment $f(x) = k$ and $f(x) = k$ (respective ment $f(x) = k$ and $f(x) = k$ (respective ment $f(x) = k$ and $f(x) = k$ (respective ment $f(x) = k$ and $f(x) = k$ (respective ment $f(x) = k$ and $f(x) = k$ (respective ment $f(x) = k$ and $f(x) = k$ (respective ment $f(x) = k$ and $f(x) = k$ (respective ment $f(x) = k$ and $f(x) = k$ (respective ment $f(x) = k$ and $f(x) = k$ (respective ment $f(x)$	Forme: $\lim_{x \to a} f(x) = \frac{0}{0}$	\bullet Si f est une fonction rationnelle on factorise par $(x-a)$ en utilisant les
Etudier la continuité de f en x_0 . Déterminer domaine de continuité de f Montrer que \sqrt{f} est continue sur I. Montrer que f est continue sur I. Montrer que f est continue sur I. f (x) et la comparer avec f (x_0). f Rédaction en utilisant les opérations sur les fonctions continues (Somme , produit , rapport , composé) f continue sur I. f f continue sur I. f f continue sur I. f f continue sur J. f f continue sur J. f f continue sur J. f		produits remarquables ou le trinôme $ax^2 + bx + c = a(x-x')(x-x'')$.
Déterminer domaine de continuité de f Montrer que \sqrt{f} est continue sur I. Montrer que fog est continue sur I. Montrer que fog est continue sur I. $f(a,b) = [m,M]$ avec $m = \min(f)$ et $M = \max(f)$ sur $[a,b]$. Montrer que $f(a,b) = [m,M]$ avec $m = \min(f)$ et $f(a,b) = [m,b]$. Montrer que $f(a,b) = [m,b]$ if $f(a,b) = [m,b]$ if $f(a,b) = [m,b]$. Montrer que $f(a,b) = [f(a,b)]$ if $f(a,b) = [f(a,b)]$		❖ Si f est une fonction irrationnelle on multiplie par l'expression conjuguée.
Déterminer domaine de continuité de f Montrer que \sqrt{f} est continue sur I. Montrer que f est continue sur I. Montrer que f est f continue sur I. Montrer que f est f continue sur I. Montrer que f est f continue sur J. Déterminer $f([a,b])$ ou f est une fonction continue sur f f est continue sur f f est f est continue sur f f est f est une fonction continue sur f f est f est continue sur f est est continue sur f est est continue sur f est	Etudier la continuité	• On cherche $\lim f(x)$ et la comparer avec $f(x_0)$.
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
Montrer que \sqrt{f} est continue sur I. $\Leftrightarrow f \text{ continue sur I.}$ Montrer que fog est continue sur I. $\Leftrightarrow g(I) \subset J$ Déterminer $f([a,b])$ $\Leftrightarrow f([a,b]) = [m,M] \text{ avec } m = \min(f) \text{ et } M = \max(f) \text{ sur } [a,b].$ ou $f \text{ est une fonction continue sur } [a,b].$ Montrer que $f(x) = k$ $f([a,b]) = [f(b), f(a)] \text{ si } f \text{ est croissante sur } [a,b].$ Montrer que $f(x) = k$ $f([a,b]) = [f(b), f(a)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(b), f(a)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(b), f(a)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(b), f(a)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(b), f(a)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(b), f(a)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(b), f(a)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(b), f(a)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(b), f(a)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(b), f(a)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(a), f(b)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(a), f(b)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(a), f(b)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(a), f(b)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(a), f(b)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(a), f(b)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(a), f(b)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(a), f(b)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(a), f(b)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(a), f(b)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(a), f(b)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(a), f(b)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(a), f(b)] \text{ si } f \text{ est décroissante sur } [a,b].$ $f([a,b]) = [f(a), f(b)] \text{ si } f est décroissante su$		<u> </u>
continue sur I. Montrer que fog est continue sur I.		
Montrer que fog est continue sur I. \Leftrightarrow f continue sur J. \Leftrightarrow g continue sur I . \Leftrightarrow $f([a,b]) = [m,M]$ avec $m = \min(f)$ et $M = \max(f)$ sur $[a,b]$. Ou f est une fonction continue sur I and I is f est croissante sur I and I is f est décroissante sur I and I is f est décroissante sur I and I is f est continue sur I . \Leftrightarrow f est continue sur I . \Leftrightarrow f est strictement $f(f)$ is f est décroissante sur $f(f)$ is f est continue sur $f(f)$ is f est décroissante sur $f(f)$ is f est continue sur $f(f)$ is f est décroissante sur $f(f)$ is f est continue sur $f(f)$ is f est décroissante sur $f(f)$ is f est continue sur $f(f)$ is f est décroissante sur $f(f)$ is f est continue sur $f(f)$ is f est décroissante sur $f(f)$ is f est continue sur $f(f)$ is f est décroissante sur $f(f)$ is f est continue sur $f(f)$ is f est décroissante sur $f(f)$. $f(f)$ is f est continue sur $f(f)$ is f est décroissante sur $f(f)$ is f est décroissante sur $f(f)$ is f est décroissante sur $f(f)$. $f(f)$ is $f(f)$ est $f(f)$ in $f(f)$ is f est décroissante sur $f(f)$ is $f(f)$. $f(f)$ est $f(f)$ is $f(f)$ est $f(f)$ est $f(f)$ in $f(f)$ est $f(f)$ is $f(f)$ est $f(f)$	Y	·
continue sur I. $ *g$ continue sur I . $ *g(I) \subset J $ Déterminer $f([a,b]) $ $ *f([a,b]) = [m,M]$ avec $m = \min(f)$ et $M = \max(f)$ sur $[a,b]$. ou f est une fonction continue sur $[a,b]$. $ *f([a,b]) = [f(a),f(b)]$ si f est croissante sur $[a,b]$. $ *f([a,b]) = [f(b),f(a)]$ si f est décroissante sur $[a,b]$. Montrer que $f(x) = k$ (respectivement $f(x) = 0$) admet une solution unique a sur $f(x) = 0$ admet une solution unique $f(x) = 0$ solution unique $f(x) = 0$ admet une solution unique $f(x) = 0$ solution unique $f($		
Déterminer $f([a,b])$ $f([a,b]) = [m,M]$ avec $m = \min(f)$ et $M = \max(f)$ sur $[a,b]$. ou f est une fonction continue sur $[a,b]$. $f([a,b]) = [f(a),f(b)]$ si f est croissante sur $[a,b]$. $f([a,b]) = [f(b),f(a)]$ si f est décroissante sur $[a,b]$. Montrer que $f(x) = k$ f est continue sur f . (respectivement $f(x) = 0$) admet une solution unique $f(x) = 0$ sur $f(x) = 0$ admet une solution unique $f(x) = 0$ sur $f(x) = 0$ su	- • •	· ·
Déterminer $f([a,b])$ $f([a,b]) = [m,M]$ avec $m = \min(f)$ et $M = \max(f)$ sur $[a,b]$. ou f est une fonction continue sur $[a,b]$. $f([a,b]) = [f(a),f(b)]$ si f est croissante sur $[a,b]$. Montrer que $f(x) = k$ $f([a,b]) = [f(b),f(a)]$ si f est décroissante sur $[a,b]$. Montrer que $f(x) = k$ f est continue sur f f est strictement monotone sur f f (Pour l'unicité de la solution) solution unique f sur f est strictement monotone sur f (Pour l'unicité de la solution) f est strictement monotone sur f (Pour f (Pour f (Pour dire que f (Pour f (Pou		
ou f est une fonction continue $\sup [a,b]$. $f([a,b]) = [f(a),f(b)]$ si f est croissante $\sup [a,b]$. $f([a,b]) = [f(b),f(a)]$ si f est décroissante $\sup [a,b]$. Montrer que $f(x) = k$ f est continue $\sup I$. $f(x) = 0$ admet une solution unique α sur I et que $\alpha \in]a,b[$ Montrer que $f(x) = x$ admet une solution unique α sur I et que $\alpha \in]a,b[$ Montrer que $f(x) = x$ admet une solution unique α sur I et que $\alpha \in]a,b[$ Etudier les variations de $f(x) \in A$ calculer $f(x) \in A$ on pose $f(x) \in A$ calculer $f(x) \in A$ calculer $f(x) \in A$ on signe.	Déterminer $f([a,b])$	
continue sur $[a,b]$.	ζ/	
Montrer que $f(x) = k$	continue sur $[a,b]$.	
(respectivement $f(x) = 0$) admet une solution unique α sur I et que $\alpha \in]a,b[$ Montrer que $f(x) = x$ admet une solution unique α sur I et que $\alpha \in]a,b[$ Montrer que $f(x) = x$ admet une solution unique α sur I et que $\alpha \in]a,b[$ Etudier les variations de $f(x) = x$ calculer $f(x) = x$ calculer $f(x) = x$ calculer $f(x) = x$ calculer $f(x) = x$ calcular $f(x) = x$ calcul		(2) 2/ 2
$f(x) = 0$) admet une solution unique α sur I et que $\alpha \in]a,b[$ \star f est strictement monotone sur I (Pour l'unicité de la solution) \star k compris entre $f(a)$ et $f(b)$ (resp $f(a) \times f(b) < 0$) (pour dire que $\alpha \in]a,b[$)Montrer que $f(x) = x$ admet une solution unique α sur I et que $\alpha \in]a,b[$ \star On pose $g(x) = f(x) - x$ et l'équation devient $g(x) = 0$ Etudier les variations de f . \star D f et limites aux bornes de D f . \star Calculer $f'(x)$ et son signe.	_ *	· ·
solution unique α sur I et que $\alpha \in]a,b[$ Montrer que $f(x) = x$ admet une solution unique α sur I et que $\alpha \in]a,b[$ Etudier les variations de $f(x) = x$ $\alpha \in [a,b[$] The property of the property	` -	
I et que $\alpha \in]a,b[$ Montrer que $f(x) = x$ admet une solution unique α sur I et que $\alpha \in]a,b[$ Etudier les variations de f . On pose $g(x) = f(x) - x$ et l'équation devient $g(x) = 0$ $\alpha \in]a,b[$ Calculer $f'(x)$ et son signe.	* ' '	
Montrer que $f(x) = x$		
admet une solution unique α sur I et que $\alpha \in]a,b[$ Etudier les variations de f . \bullet Calculer $f'(x)$ et son signe.		3 -
unique α sur I et que $\alpha \in]a,b[$ Etudier les variations de f . \bullet D f et limites aux bornes de D f . \bullet Calculer $f'(x)$ et son signe.		• On pose $g(x) = f'(x) - x$ et l'équation devient $g(x) = 0$
$\alpha \in]a,b[$ Etudier les variations de f . \bullet D f et limites aux bornes de D f . \bullet Calculer $f'(x)$ et son signe.		
Etudier les variations \bullet D f et limites aux bornes de D f . \bullet Calculer $f'(x)$ et son signe.		
de f . \diamondsuit Calculer $f'(x)$ et son signe.		\bullet D f et limites aux bornes de D f.
, January (1,7) or some sugaran		
	·	❖ Tableau de variation.

Interpréter	La droite d'équation $x = a$ est une asymptote verticale à C_f .
$\lim f(x) = \infty$	
Interpréter	♣ La droite d'équation y = g est une asymptote horizontale à C
*	\Lapprox La droite d'équation $y = a$ est une asymptote horizontale à C_f .
$\lim_{x\to\infty}f(x)=a$	
Montrer que la droite	$ \bullet \text{ Montrer que } \lim_{x \to +\infty} \left(f(x) - \left(ax + b \right) \right) = 0. $
D: y = ax + b est une	$x \to \pm \infty$ ($x \to \pm \infty$)
asymptote à C_f	
Interpréter :	\bullet C_f admet une branche parabolique de direction (xx').
$\lim_{x \to \infty} \left(\frac{f(x)}{x} \right) = 0$	
$\left \lim_{x \to \infty} \left(\frac{1}{x} \right) \right = 0$	
Interpréter :	\bullet C_f admet une branche parabolique de direction (yy').
$\lim_{x \to \infty} \left(\frac{f(x)}{x} \right) = \infty$	
Interpréter :	\bullet C_f admet une branche parabolique de direction y=ax.
$\lim_{x \to \infty} \left(\frac{f(x)}{x} \right) = a$	
et interpréter :	
$\lim_{x\to\infty} (f(x) - ax) = 0$	
Montrer que $D : x = a$	❖ Vérifier que :
est un axe de symétrie	$\bullet \forall x \in D_f : 2a - x \in D_f .$
pour C_f .	· · · · · · · · · · · · · · · · · · ·
	f(2a-x) = f(x).
Montrer que I (a,b) est	❖ Vérifier que :
un centre de symétrie	$\bullet \forall x \in D_f : 2a - x \in D_f.$
pour C_f .	$\bullet f(2a-x) = 2b - f(x)$
Etudier la position	\bullet Etudier le signe de $f(x)-(ax+b)$
relative entre C_f et la	
droite D : $y = ax + b$.	
Préciser l'intersection	• Résoudre l'équation $f(x) = 0$.
de C_f avec l'axe des	J ()
abscisses (xx')	
Préciser l'intersection	\diamond Calculer $f(0)$ le point est de la forme $(0, f(0))$.
de C_f avec l'axe des	
ordonnées (yy')	
() ()	