Mathématiques

Lycée Ibn khaldoun ouesseltia

Durée 2 heures

Devoir de contole n°01

lundi 02/11/2015

4 ème Sc1+2

Mr: Arfaoui khaled

EXERCICE N°1 (5pts)

Soit U la suite définie par :
$$\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{U_n}{2 + U_n} \end{cases}$$

1/ a) Calculer U₁ et U₂

b)Montrer que la suite U n'est ni arithmétique ni géométrique

2/ a) Montrer que ; pour tout n de IN ; $U_n \ge 0$

b)Montrer que la suite U est décroissante

c) En deduire que u est convergente et calculer sa limite

3/ Soit V la suite définie par : $V_n = \frac{U_n}{1 + U_n}$

a) Montrer que la suite V est une suite géométrique

b) Déterminer la limite de la suite V_n

c) Montrer que : $U_n = \frac{1}{2^{n+1} - 1}$

d) Retrouver la limite de la suite U_n

EXERCICE N°2 (8pts)

1/a) Calculer $(1-2i\sqrt{3})^2$

b)Résoudre dans l'ensemble des nombres complexes l'équation $z^2 - z + 3 + i\sqrt{3} = 0$

c) Mettre les solutions sous forme exponentielles

2/ Dans le plan complexe rapporté à un orthonormé direct (O, \dot{i} , \dot{j}), on donne les points

A, B et M d'affixes respectives i $\sqrt{3}$; 1- i $\sqrt{3}$ et $\sqrt{3}$ e^{i θ} , $\theta \in \left] \frac{\Pi}{2}; \frac{3\Pi}{2} \right[$

a) Montrer que
$$z_M - z_A = 2\sqrt{3}$$
 i $\sin(\frac{\theta}{2} - \frac{\Pi}{4}) e^{i(\frac{\theta}{2} + \frac{\Pi}{4})}$

et en déduire la distance AM en fonction de heta

- b) Déterminer θ pour que le triangle OAM soit isocèle en A
- 3/ On désigne par B' le symétrique de B par rapport à l'axe des abscisses et par N le point Tel que OB'NM soit un parallélogramme
- a) Déterminer les affixes des points B ' et N
- b) Déterminer l'ensemble des points N lorsque θ varie dans $\frac{\Pi}{2}$; $\frac{3\Pi}{2}$

EXERCICE N°3(7pts)

Soit f la fonction définie sur IR par : f(x) =
$$\begin{cases} \sqrt{x^2 + 4} + x & \text{si } x \le 0 \\ \frac{(2 + \sqrt{x + 4}) \sin(\frac{x}{2})}{x} & \text{si } x > 0 \end{cases}$$

1/ a) Calculer $\lim_{x \to \infty} f(x)$

b) Montrer que pour tout
$$x \succ 0$$
 , on a : $\frac{-1}{\sqrt{x+4}-2} \le f(x) \le \frac{1}{\sqrt{x+4}-2}$

- c) En déduire $\lim_{x \to +\infty} f(x)$
- 2/ a) Montrer que f es continue en 0
 - b) Etudier la continuité de f sur IR
- 3/ On suppose que la restriction de f sur $\,$]- $\,$ $\,$ $\,$, 0[est strictement croissante

Montrer que l'équation f(x) = 1 admet une solution unique α dans [-2 , -1]

4/ la courbe ci contre est la représentation graphique d'une fonction h continue sur IR

a) Calculer les limites suivantes

$$_{x}\underline{\lim}_{+\infty}$$
 ho f(x); $_{x}\underline{\lim}_{+\infty}$ fo h(x) et $_{x}\underline{\lim}_{0}$ ho f(x)

b) Etudier la continuité de hof sur IR

