Niveau: 4 ime Wath

Série nº 13

Prof: Daghsni mahmoud essahbi

Sc. expert et 7ech

sciences physiques

Chimie: Thème: Piles électrochimiques

Exercice n°1:

- a) Schématiser la pile formée par les couples redox Ni²⁺ / Ni (placé à droite) et Zn²⁺ / Zn (placé à gauche).
 - b) Donner le symbole de cette pile et écrire l'équation chimique associée.
- 2. La f.é.m. normale de la pile étudiée est égale à 0,50 V.
 - a) Calculer la constante d'équilibre relative à l'équation associée à cette pile.
 - b) Comparer le pouvoir oxydant des couples redox mis en jeu.

Exercice n°2 :

On donne $E^{\circ}_{Hg^{2*}/Hg} = 0.85 \text{ V et } E^{\circ}_{Pb^{2*}/Pb} = -0.13 \text{ V}.$

On considère l'équation chimique :

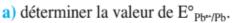
$$Hg^{2+} + Pb \rightarrow Hg + Pb^{2+}$$

- 1. a) Comparer le pouvoir oxydant des couples redox mis en jeu.
 - b) Calculer la f.é.m. standard de la pile associée à cette équation chimique.
- 2. a) On réalise un mélange contenant Hg²⁺, Pb²⁺ à la concentration de 1 mol.L⁻¹, du mercure liquide et du plomb en poudre, indiquer le sens d'évolution du système chimique ainsi constitué.
 - **b)** Même question avec $[Hg^{2+}] = 0.05 \text{ mol.L}^{-1}$ et $[Pb^{2+}] = 0.2 \text{ mol.L}^{-1}$.

Exercice n°3 :

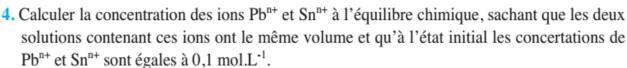
On mesure la f.é.m. des piles symbolisées par Co | Co²⁺ || Cd²⁺ | Cd pour différentes valeurs des concentrations des ions cobalt Co²⁺ et des ions cadmium Cd²⁺. On obtient le tableau suivant :

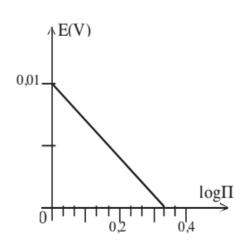
Pile	[Co ²⁺] (mol.L ⁻¹)	[Cd ²⁺] (mol.L ⁻¹)	E (V)
1	10-1	10 ⁻¹	- 0,12
2	10-5	1	0,03
3	10-2	10-1	- 0,09


- Ecrire l'équation chimique associée à ces piles.
- 2. a) Donner, à 25°C, l'expression de la f.é.m. de l'une de ces piles.
 - b) Calculer sa f.é.m. standard.
 - c) Déduire la valeur de la constante d'équilibre de l'équation chimique associée et comparer la force des oxydants relatifs à chacun des couples redox mis en jeu.
- 3. a) Quelle réaction se produit dans chaque pile ?
 - b) L'oxydant le plus fort réagit-il toujours avec le réducteur le plus fort?

Exercice n°4

- 1. On réalise une pile A en associant la demi-pile normale à hydrogène avec la demi-pile constituée par le couple Fe²⁺/ Fe dans les conditions standards. L'électrode normale à hydrogène est placée à droite et la mesure de la f.é.m. de cette pile donne E_A = 0,44 V.
 - a) Faire le schéma de la pile A avec toutes les indications nécessaires.
 - b) Préciser le sens du courant dans le circuit extérieur à la pile et écrire l'équation bilan de la réaction spontanée lorsque la pile débite du courant.
 - c) Déterminer le potentiel standard du couple Fe²⁺/ Fe.
- 2. On réalise une pile B en associant les deux demi-piles formées par les deux couples Fe^{2+} / Fe et Pb^{2+} / Pb avec $[Fe^{2+}] = 1 \text{ mol.L}^{-1}$ et $[Pb^{2+}] = 0,1 \text{mol.L}^{-1}$. L'électrode de plomb joue le rôle du pôle positif de la pile et la mesure de la f.é.m. donne : $E_B = -0,28 \text{ V}$.
 - a) Donner le symbole de la pile B et écrire l'équation de la réaction spontanée lorsque la pile débite du courant.
 - b) Déterminer le potentiel standard du couple Pb²⁺/ Pb et comparer les pouvoirs oxydant et réducteur des deux couples.


Exercice n°5:


- On réalise, dans les conditions standards, une pile électrochimique (P), formée à droite par le couple Pbⁿ⁺/ Pb et à gauche par le couple Snⁿ⁺/ Sn, de potentiel standard d'électrode : E°_{Snⁿ⁺/Sn} = -0,14 V.
 - a) Définir le potentiel standard d'électrode E°_{M°-/M} du couple Mⁿ⁺/ M.
 - b) Ecrire l'équation chimique associée à la pile (P).
- 2. On mesure la f.é.m. E de la pile (P) pour différentes valeurs de la fonction des concentrations Π jusqu'à atteindre l'équilibre dynamique. On donne ci-contre la courbe représentative de E en fonction de log Π. En exploitant la courbe :

- b) comparer le pouvoir oxydant de Pbⁿ⁺ et de Snⁿ⁺.
- c) déduire la valeur de la constante d'équilibre K relative à l'équation chimique associée à la pile (P).
- Rappeler l'expression de la f.é.m. E de la pile, à 25°C, en fonction de E°, n et Π.

Déduire de la courbe la valeur de n.

Exercice n°6:

- 1. Sachant qu'une lame de zinc est attaquée par une solution aqueuse de chlorure d'hydrogène HCl alors qu'une lame de cuivre ne l'est pas, classer les couples Cu²⁺/Cu, Zn²⁺/Zn et H₃O⁺/H₂ par ordre de pouvoir oxydant croissant.
- 2. a) Définir le potentiel standard d'électrode d'un couple redox et donner le schéma de la pile qui traduit cette définition.
 - b) Classer les potentiels standards des couples précédents à ordre croissant.
- 3. On réalise, dans les conditions standards, une pile électrochimique (P), formée par les couples : Cu²+/ Cu et Zn²+/ Zn. La mesure de la f.é.m. de cette pile donne E = -1,10 V.
 - a) Montrer que la demi-pile formée par le couple Zn²⁺/ Zn est placée à droite.
 - b) Ecrire, en justifiant, l'équation de la réaction spontanée qui se produit quand la pile débite un courant.
 - c) Sachant que le potentiel standard d'électrode du couple Cu²⁺/Cu est : E°_{Cu²⁺/Cu} = 0,34 V 25°C, déduire celui du couple Zn²⁺/Zn.
- 4. Calculer, à 25°C, la f.é.m. de la pile symbolisée par :

$$Zn \mid Zn^{2+}(5.10^{-3}M) \parallel Cu^{2+}(5.10^{-1}M) \mid Cu$$
.

Exercice n°7:

L'équation chimique associée à une pile électrochimique (P) est :

$$Co + Cd^{n+} \rightleftharpoons Co^{n+} + Cd$$

Pour cette pile on a : $[Cd^{n+}] = 1 \text{ mol.L}^{-1} \text{ et } [Co^{n+}] = x \text{ mol.L}^{-1}$.

- 1. a) Donner le symbole de la pile (P).
 - b) Montrer que la f.é.m. E de la pile (P) a pour expression :

$$E = E^{\circ} - \frac{0.06}{n} \log x$$
 à 25°C, où E° est la f.é.m. standard de la pile.

 Pour différentes valeurs de x, on mesure E. Les résultats obtenus sont consignés dans le tableau suivant :

X	10-1	10-2	10-3	10-4	10-5	10-6
E(V)	-0,09	-0,06	-0,03	0,00	0,03	0,06

- a) Pour quelles valeurs de x, Coⁿ⁺ oxyde spontanément Cd? Justifier.
- Tracer la courbe représentative de E en fonction de logx.
 On prendra pour échelle: 2 cm pour 1 unité en abscisses;

- 1 cm pour 10 mV en ordonnées.

c) Déduire de la courbe la valeur de E° et de n.

Exercice n°8:

1. On mesure la f.é.m. des piles suivantes dont les molarités des différentes solutions sont égales

à 0,01 mol.L⁻¹: Pile 1: Sn | Sn²⁺ || Fe²⁺ | Fe, E₁ = -0,30 V; Pile 2: Fe | Fe²⁺ || Pb²⁺ | Pb, E₂ = 0,31 V.

- a) Que représentent les valeurs des f.é.m. mesurées ?
- b) Déterminer la f.é.m. E_3 de la pile $3: Pb \mid Pb^{2+}(0,2M) \parallel Sn^{2+}(0,04M) \mid Sn$.
- c) Déterminer la valeur de E° _{Sn²-/Sn} et E° _{Fe²-/Fe}.
- d) Que se passe-t-il lorsqu'on plonge :
 - une lame de Fer dans une solution de nitrate de plomb ?
 - une lame de Plomb dans une solution de chlorure d'étain ?
- 2. On considère la pile suivante : $Sn \mid Sn^{2+}(0,1 \text{ M}) \parallel Pb^{2+}(x \text{ M}) \mid Pb$.
 - a) Exprimer la f.é.m. de cette pile en fonction de x.
 - b) Pour quelle valeur de x la pile est en équilibre dynamique.
 - c) Pour quelles valeurs de x le plomb Pb réduit-il spontanément les ions Sn²⁺?
 - d) A l'équilibre dynamique, on dilue le compartiment contenant les ions Sn²⁺. Que se passe-t-il ? Justifier la réponse et préciser le signe de E.

On donne : $E^{\circ}_{Pb^{2}/Pb} = -0.13 \text{ V}.$

Exercice n°9:

On associe l'électrode normale à hydrogène avec la demi-pile standard formée par le couple A1³⁺/ A1.

La f.é.m. standard de cette pile vaut 1,66 V et l'électrode platinée est le pôle positif.

- 1. a) Donner le symbole de cette pile et la schématiser.
 - b) Donner le bilan des transformations qui ont eu lieu dans la pile.
 - c) Déterminer le potentiel standard redox du couple Al³⁺/ Al.
- On remplace l'électrode à hydrogène par la demi-pile constituée par le couple Au³⁺/ Au avec [Au³⁺] = 1 mol.L⁻¹.
 - a) Sachant que E°_{Au³-/Au}= 1,40 V, indiquer le pôle positif de cette nouvelle pile.
 - b) Cette pile consomme-t-elle de l'or ou de l'aluminium.
 - c) Sachant que la masse d'aluminium a varié de 1 g, déterminer la variation de la masse d'or.
- 3. On considère la pile suivante : Au \mid Au³⁺(10⁻² M) \mid Al³⁺(1 M) \mid Al.
 - a) Ecrire l'équation chimique associée à cette pile et déterminer sa constante d'équilibre. Conclure.
 - b) Ecrire l'équation de la réaction spontanée qui se produit quand la pile débite.
 - c) Déterminer les concentrations en Au³⁺ et Al³⁺ à l'équilibre dynamique. Les deux solutions de ces ions ont le même volume.

On donne : $M(Al) = 27.0 \text{ g.mol}^{-1} \text{ et } M(Au) = 197.0 \text{ g.mol}^{-1}$.

