Comment déterminer un ensemble de points à partir de la forme algébrique ?

Méthode: Il faut savoir « traduire l'énoncé », les remarques suivantes sont souvent utiles pour le faire :

- z est un nombre réel signifie que Im(z) = 0 ou que $z = \bar{z}$ ou que l'image de z est un point de l'axe réel (on l'interprètera aussi plus loin à l'aide de l'argument)
- z est un nombre imaginaire signifie que Re(z) = 0 ou que $z = -\bar{z}$ ou que l'image de z appartient à l'axe imaginaire.(interprétation aussi avec l'argument, voir plus loin)

Il faut aussi savoir reconnaître les ensembles de points à partir de leur équation :

• ax + by + c = 0 pour une droite

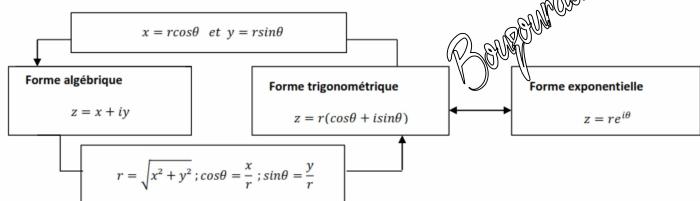
8m)

• $(x - x_{\Omega})^2 + (y - y_{\Omega})^2 = R^2$ pour le cercle de centre le point Ω d'affixe $(x_{\Omega} + iy_{\Omega})$ et de rayon R.

Exemples: A tout nombre complexe z différent de -2i, on associe le nombre complexe $Z = \frac{z-2+i}{z+2i}$. On pose z = x + iy où x et y sont deux réels.

- 1) Exprimer en fonction de x et y la partie réelle X et la partie imaginaire Y de Z.
- 2) En déduire l'ensemble \mathcal{E} des points M du plan complexe, d'affixe z tels que Z est réel.
- 3) En déduire l'ensemble \mathcal{F} des points M du plan complexe, d'affixe z tels que Z est imaginaire pur.

Forme algébrique	a + ib vérifier que a et b sont réels.	Cette forme facilite les calculs de somme et de différence et permet de faire le lien entre les	
	sont réels.	différence et permet de faire le lien entre les	
		différence et permet de faire le lien entre les	
		complexes et les coordonnées cartésiennes des	
		points images.	
Forme	$r(\cos\theta + i\sin\theta)$ vérifier que r	Cette forme établit le lien entre les complexes	
trigonométrique	est un réel positif.	et la géométrie, elle permet le calcul des	
		distances et des angles.	
Forme	$re^{i\theta}$ vérifier que r est positif	Cette forme facilite les calculs de produit,de	
exponentielle		quotient et de puissance de nombres	
		complexes.	
		1/10	
Pour passer d'une for	rme à l'autre :	$\mathcal{M}_{\mathcal{M}}$	
	$x = rcos\theta$ et $y = rsin\theta$	SEMMY.	
	$x = r\cos\theta$ et $y = r\sin\theta$		
↓ '			



Exemple: Relier les nombres complexes proposés à leurs différentes formes :

Complexes	Forme algébrique	Forme trigonométrique	Forme exponentielle
$(1+i)^3$	-2 - 2i	$2\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$	$\sqrt{2}e^{i\frac{3\pi}{4}}$
$-2\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$	2 + 2 <i>i</i>	$2\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$	$2\sqrt{2}e^{-i\frac{3\pi}{4}}$
$\frac{8+4i}{3-i}$	-2+2i	$2\sqrt{2}\left(\cos\frac{-3\pi}{4} + i\sin\frac{3\pi}{4}\right)$	
3-i			$2\sqrt{2}e^{i\frac{\pi}{4}}$

ightharpoonup Cas particuliers à bien savoir : $e^{i \times 0} = 1$ $e^{i \frac{\pi}{2}} = i$ $e^{i \pi} = -1$ $e^{i \frac{-\pi}{2}} = -i$

Comment calculer module et argument?

Exemple: z = 3 - 3i.

$$|z| = \sqrt{a^2 + b^2} = \sqrt{3^2 + (-3)^2} = \sqrt{9 + 9} = \sqrt{18} = \sqrt{9} \sqrt{2} = 3\sqrt{2}$$

$$\cos \theta = \frac{a}{\rho} = \frac{3}{3\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}.$$

$$\cos \theta = \frac{a}{\rho} = \frac{3}{3\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}.$$
 On peut dire $\theta = \frac{\pi}{4}$ ou $\theta = -\frac{\pi}{4}$ à 2π près.

$$\sin \theta = \frac{b}{\rho} = \frac{-3}{3\sqrt{2}} = \frac{-1}{\sqrt{2}} = \frac{-\sqrt{2}}{2}$$
 NEGATIF

donc
$$\theta = \frac{-\pi}{4} + 2 k \pi$$

$$\frac{\pi}{4}$$

$$\frac{\sqrt{2}}{2}$$

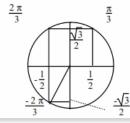
$$-\frac{\pi}{4}$$

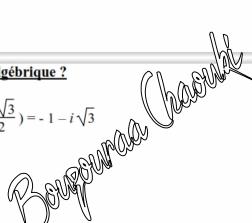
donc z =
$$[3\sqrt{2}, \frac{-\pi}{4}] = 3\sqrt{2} e^{-i\frac{\pi}{4}}$$

Comment passer de la forme trigonométrique à la forme algébrique ? $\rho e^{i\theta} = [\rho, \theta] = \rho(\cos \theta + i \sin \theta) = \rho \cos \theta + i \rho \sin \theta$

$$\rho e^{i\theta} = [\rho, \theta] = \rho(\cos\theta + i\sin\theta) = \rho\cos\theta + i\rho\sin\theta$$

exemple
$$2 e^{-i\frac{2\pi}{3}} = 2\left(\cos\frac{-2\pi}{3} + i\sin\frac{-2\pi}{3}\right) = 2\left(\frac{1}{2} + i\frac{-\sqrt{3}}{2}\right) = -1 - i\sqrt{3}$$





Comment utiliser la forme trigonométrique des nombres complexes en géométrie?

Méthode: Pour utiliser les nombres complexes en géométrie, il est utile de connaître leur forme trigonométrique, les règles de calcul sur celle-ci et l'interprétation géométrique des modules et arguments suivants :

$$|z_B - z_A| = AB$$
 ; $\arg(z_B - z_A) = (\vec{u}; \overrightarrow{AB})$ (2π) ; $\left|\frac{z_C - z_A}{z_B - z_A}\right| = \frac{AC}{AB}$; $\arg\left(\frac{z_C - z_A}{z_B - z_A}\right) = (\overrightarrow{AB}; \overrightarrow{AC})$ (2π)

Dans ce qui précède A, B et C sont trois points tels que A≠B et A≠C

Exemples: 1) Soit $z_1 = -\sqrt{3} + i$ $z_2 = -2i$ $z_3 = \sqrt{3} + i$ les affixes respectives de trois points A, B et C.

Déterminer la forme exponentielle de $\frac{z_2-z_3}{z_1-z_3}$. En déduire la nature du triangle ABC.

Comment multiplier deux nombres complexes?

On peut utiliser les deux formes, mais si on a la forme trigonométrique, les calculs seront plus simples.

Exemple: $(3+4i)(5-2i) = 15-6i+20i-8i^2 = 15+14i+8=23+14i$

$$5 e^{i\frac{\pi}{12}} \times 2 e^{i\frac{\pi}{6}} = 10 e^{i(\frac{\pi}{12} + \frac{\pi}{6})} = 10 e^{i\frac{\rho}{4}} \quad (= 10(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}) = 10\frac{\sqrt{2}}{2} + i \cdot 10\frac{\sqrt{2}}{2} = 5\sqrt{2} + 5\sqrt{2} i.$$

Comment diviser deux nombres complexes?

On peut utiliser les deux formes, mais si on a la forme trigonométrique, les calculs seront plus simples.

Exemple:
$$\frac{(3+4i)}{(5-2i)} = \frac{(3+4i)(5+2i)}{(5-2i)(5+2i)} = \frac{15+6i+20i+8i^2}{25-4i^2} = \frac{15+26i-8}{25+4} = \frac{7+26i}{29} = \frac{7}{29} + \frac{26}{29}i.$$

Exemple
$$\frac{5 e^{i\frac{\pi}{12}}}{2 e^{i\frac{\pi}{6}}} = \frac{5}{2} e^{i(\frac{\pi}{12} - \frac{\pi}{6})} = 2,5 e^{-i\frac{\pi}{12}}$$

- 2) Déterminer l'ensemble des points M d'affixe z tels que |z 5 + 3i| = 9.
- 3) Déterminer l'ensemble des points M d'affixe z tels que |z+7-2i|=|z+5-i|
- 4) Déterminer l'ensemble des points M d'affixe z tels que |z 5i| = 2|z + 1 3i|

Joseph Charles Méthode: Pour trouver les ensembles cherchés on utilise en général les caractérisations suivantes:

- $z \in \mathbb{R} \iff z = 0 \text{ ou } \arg(z) = 0 \ (\pi)$
- $z \in \mathbb{R}$ et $z > 0 \iff \arg(z) = 0$ (2π)
- $z \in \mathbb{R} \ et \ z < 0 \iff \arg(z) = \pi \ (2\pi)$
- $z \in i\mathbb{R} \iff z = 0 \text{ ou } \arg(z) = \frac{\pi}{2} (\pi)$
- $z \in i\mathbb{R} \ et \ Im(z) > 0 \Leftrightarrow \arg(z) = \frac{\pi}{2} \ (2\pi)$
- $z \in i\mathbb{R} \ et \ Im(z) < 0 \Leftrightarrow \arg(z) = -\frac{\pi}{2} \ (2\pi)$
- $MA = MB \Leftrightarrow$ Mappartient à la médiatrice de [AB]
- $(\overrightarrow{MA}; \overrightarrow{MB}) = 0$ $(\pi) \Leftrightarrow M$ appartient à la droite (AB) privée de A et B
- $(\overrightarrow{MA}; \overrightarrow{MB}) = \pi (2\pi) \iff M \in]AB[$
- $(\overrightarrow{MA}; \overrightarrow{MB}) = \frac{\pi}{2}$ $(\pi) \Leftrightarrow M$ appartient au cercle de diamètre [AB] privé de A et B.
- $(\overrightarrow{MA}; \overrightarrow{MB}) = \frac{\pi}{2} (2\pi) \Leftrightarrow Mappartient à l'un des demi cercle de diamètre [AB] privé de A et B,$ on précise lequel en citant par exemple un de ses points.

Exemple: On désigne par A et B les points d'affixes respectives -i et 2i. A tout point M d'affixe z, M distinct de A, on associe le point M' d'affixe Z telle que $Z = i \left(\frac{z-2i}{z-4i} \right)$.

- 1) Déterminer l'ensemble des points M dont les images M' appartiennent à l'axe imaginaire.
- Déterminer l'ensemble des points M dont les images M'appartiennent à l'axe réel.
- 3) Déterminer l'ensemble des points M dont les images M'appartiennent au cercle de centre O et de rayon 1.

Comment préciser la position relative de trois points ?

<u>Méthode</u>: Dans le plan complexe, z_A , z_B et z_C sont trois nombres complexes distincts, d'images respectives A, B et C. On considère le nombre complexe $Z = \frac{z_C - z_A}{z_B - z_A}$. On a :

- $|Z| = 1 \Leftrightarrow AB = AC$
- $Z \in \mathbb{R} \iff A, B \text{ et } C \text{ alignés}$
- $Z \in i\mathbb{R} \iff (AB) \perp (AC)$
- $Z = \pm i \iff ABC$ est rectangle et isocèle en A
- $Z = e^{\pm i\frac{\pi}{3}} \iff ABC$ est un triangle équilatéral

Exemple: Dans chacun des cas que peut-on dire des points A, B et C?

1)
$$z_A = 2 + i$$
; $z_B = 1 + i$; $z_C = 2 + 2i$ 2) $z_A = 2 + i$; $z_B = 1 + i$; $z_C = 1 - i$

2)
$$z_A = 2 + i$$
; $z_B = 1 + i$; $z_C = 1 - i$

3)
$$z_A = -1 - 2i$$
; $z_B = -10 - 8i$; $z_C = 2$

3)
$$z_A = -1 - 2i$$
 ; $z_B = -10 - 8i$; $z_C = 2$ 4) $z_A = -1 + i\sqrt{3}$; $z_B = -1 - i\sqrt{3}$; $z_C = 2$

Comment résoudre une équation du second degré ?

exemple $3z^2 + 4z + 1 = 0$.

$$\Delta = b^2 - 4 a c = 4^2 - 4 x 3 x 1 = 16 - 12 = 4$$

$$\Delta > 0$$
 donc 2 solutions réelles

$$z_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-4 + \sqrt{4}}{2x^3} = \frac{-4 + 2}{6} = \frac{-2}{6} = -\frac{1}{3}$$

$$z_2 = \frac{-b - \sqrt{\Delta}}{2} = \frac{-4 - \sqrt{4}}{2} = \frac{-4 - 2}{6} = -\frac{6}{6} = -1$$

exemple
$$-3z^2 + 4z - 2 = 0$$
.

$$S = \{-\frac{1}{3}; -1\}$$

$$\Delta = b^{2} - 4 \text{ a c} = 4^{2} - 4 \text{ x } 3 \text{ x } 1 = 16 - 12 = 4$$

$$\Delta > 0 \text{ donc 2 solutions réelles}$$

$$z_{1} = \frac{-b + \sqrt{\Delta}}{2 \text{ a}} = \frac{-4 + \sqrt{4}}{2 \text{ x } 3} = \frac{-4 + 2}{6} = \frac{-2}{6} = -\frac{1}{3}$$

$$z_{2} = \frac{-b - \sqrt{\Delta}}{2 \text{ a}} = \frac{-4 - \sqrt{4}}{2 \text{ x } 3} = \frac{-4 - 2}{6} = -\frac{6}{6} = -1$$

$$exemple - 3 z^{2} + 4 z - 2 = 0.$$

$$\Delta = b^{2} - 4 \text{ a c} = 4^{2} - 4 \text{ x } (-3) \text{ x } (-2) = 16 - 24 = -8$$

$$\Delta < 0 \text{ donc 2 solutions réelles}$$

$$\Delta < 0 \text{ donc 2 solutions complexes conjuguées}$$

$$z_1 = \frac{-b + i\sqrt{-\Delta}}{2 \text{ a}} = \frac{-4 + i\sqrt{8}}{2(-3)} = \frac{-4 + i\sqrt{2}\sqrt{2}}{-6} = \frac{-2 + i\sqrt{2}}{-3} = \frac{2 - i\sqrt{2}}{3}$$

$$z_2 = \frac{-b - i\sqrt{-\Delta}}{2 \text{ a}} = \frac{-4 - i\sqrt{8}}{2(-3)} = \frac{-4 - i\sqrt{2}\sqrt{2}}{-6} = \frac{-2 - i\sqrt{2}}{-3} = \frac{2 + i\sqrt{2}}{3}$$

$$S = \left\{\frac{2 - i\sqrt{2}}{3}; \frac{2 + i\sqrt{2}}{3}\right\}$$

$$S = \left\{ \frac{2 - i\sqrt{2}}{3}; \frac{2 + i\sqrt{2}}{3} \right\}$$

À RETENIR: dans \mathbb{C} , on peut toujours obtenir la factorisation suivante:

$$az^2 + bz + c = a(z - z_1)(z - z_2)$$
 où z_1 et z_2 sont les racines du polynôme $az^2 + bz + c$

résoudre, dans C, l'équation :

$$z^2 = 3 + 4i$$

On écrit z = x + iy, ainsi :

$$x^2 + 2xyi - y^2 = 3 + 4i$$

Et avec la condition sur les modules $(|z|^2 = 5)$, on obtient le système :

$$\begin{cases} x^2 + y^2 = 5 \\ x^2 - y^2 = 3 \\ 2xy = 4 \end{cases}$$

Les deux premières équations donnent :

$$x^2 = 4$$
 et $y^2 = 1$

Or, d'après la troisième condition xy = 2, les réels x et y sont de même signe. On obtient donc :

$$z_1 = 2 + \mathbf{i}$$
; $z_2 = -2 - \mathbf{i}$

résoudre, dans \mathbb{C} , l'équation : $(1 + \mathbf{i})z^2 + \mathbf{i}z - 1 = 0$

$$(1+\mathbf{i})z^2+\mathbf{i}z-1=0$$

On calcule le discriminant Δ :

$$\Delta = b^2 - 4ac = -1 - 4(1 + \mathbf{i})(-1) = -1 + 4(1 + \mathbf{i}) = 3 + 4\mathbf{i}$$

On cherche un complexe δ tel que :

$$\delta^2 = 3 + 4i$$

D'après l'exemple précédent, $\delta = 2 + i$ convient. On en déduit nos deux solutions :

$$z_1 = \frac{-\mathbf{i} - (2+\mathbf{i})}{2(1+\mathbf{i})} = \frac{-2-2\mathbf{i}}{2(1+\mathbf{i})} = -1 \quad ; \quad z_2 = \frac{-b+\delta}{2a} = \frac{-\mathbf{i} + (2+\mathbf{i})}{2(1+\mathbf{i})} = \frac{2}{2(1+\mathbf{i})} = \frac{1}{2} - \frac{1}{2}\mathbf{i}$$

Remarque: on pouvait voir dès le début la racine évidente $z_1 = -1$ et en déduire z_2 avec la relation $z_1 z_2 = \frac{c}{z}$.

Résumer Cours Nombres Complexes Lycée Secondaire El Ksour A S 2014-2015 Bouzouraa Chaouki

Résoudre l'équation
$$(7-6i)z^2 - 2(7-6i)z - 85 = 0$$
.

Corrigé

$$(7-6i)z^2 - 2(7-6i)z - 85 = 0 \Leftrightarrow z^2 - 2z - \frac{85}{7-6i} = 0 \Leftrightarrow z^2 - 2z - (7+6i) = 0.$$

$$\Delta' = 8+6i = (3+i)^2 \text{ car } \begin{cases} X^2 - Y^2 = 8 \\ 2XY = 6 \\ X^2 + Y^2 = \sqrt{64+36} = 10 \end{cases} \Leftrightarrow \begin{cases} X^2 = 9 \\ Y^2 = 1 \\ XY > 0 \end{cases}$$

$$\text{donc } \begin{cases} z_1 = 1 + (3+i) = 4+i \\ z_2 = 1 - (3+i) = -2-i \end{cases}$$

$$\text{dond } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent qu'il existe une racine imaginaire pure.}$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

$$\text{dent } z^3 - (5+3i)z^3 + (5+3i)$$

Résoudre $z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$ sachant qu'il existe une racine imaginaire pure.

Résoudre
$$z^3 - (5+3i)z^2 + (7+16i)z + 3 - 21i = 0$$

Posons z = ai.

(E) s'écrit
$$(5a^2 - 16a + 3) + i(-a^3 + 3a^2 + 7a - 21) = 0$$

La partie réelle s'annule pour $a \in \{3, \frac{1}{5}\}$ et seul 3 annule la partie imaginaire donc le polynôme est divisible par z-3i et l'équation s'écrit $(z-3i)(z^2-5z+7+i)=0$ $\Delta = 25 - 4(7+i) = -3 - 4i = (1-2i)^2$

$$S = \{3i, 2+i, 3-i\}$$

Résoudre dans C l'équation $z^2 + \sqrt{3}z - 5 + 3\sqrt{3}i = 0$

Il s'agit d'une équation du second degré. $\Delta = 3 - 4(-5 + 3\sqrt{3}i) = 23 - 12i\sqrt{3}$.

$$(x+iy)^2 = 23 - 12i\sqrt{3} \iff \begin{cases} x^2 - y^2 = 23 \\ 2xy = -12\sqrt{3} \\ x^2 + y^2 = 31 \end{cases} \iff \begin{cases} x^2 = 27 \\ xy < 0 \\ y^2 = 4 \end{cases}$$

On en déduit $\Delta = (\sqrt{27} - 2i)^2 = (3\sqrt{3} - 2i)^2$.

Les solutions de l'équation sont donc $z_1 = \sqrt{3} - i$ et $z_2 = -2\sqrt{3} + i$.