Divisibilité dans N

Exercice 1:

n désigne un entier naturel.

- 1. a) Montrer par récurrence que $2^{3n} 1$ est divisible par 7.
 - b) Déduire le reste de la division euclidienne de $2^{3n} + 5$ par 7.
- 2. a) Montrer que $(n-1) \wedge (n+3) = (n+3) \wedge 4$ pour tout n > 1.
 - b) Quelles valeurs peuvent prendre le pgcd de (n-1) et (n+3)?
- 2. Déterminer l'ensemble des entiers naturels n tels que (n-1) divise (n+3).
- 3. a) Développer (n-1)(n+3).
 - b) Montrer que pour tout n > 1, les entiers (n-1) et $n^2 + 2n 2$ sont premiers entre eux.
 - c) Déterminer l'ensemble des entiers n tels que (n-1)(2n+1) divise $(n+3)(n^2+2n-2)$.

Exercice 2:

Les parties 1, 2 et 3 sont indépendantes

- 1. a) Montrer que pour tout $n \in \mathbb{N}$; $(9^n 1)$ est divisible par 8.
 - b) En déduire que pour tout $n \in \mathbb{N}$; $(3^{2n+1} 3)$ est divisible par 8.
 - c) Déterminer alors le reste de la division euclidienne de 3^{2015} et par 8.
- 2. Déterminer l'ensemble des couples (a, b) d'entiers naturels solutions des systèmes suivant :

(S)
$$\begin{cases} a+b = 144 \\ a \wedge b = 12 \end{cases}$$
 (S') $\begin{cases} a \vee b = 30 \\ a \wedge b = 5 \end{cases}$ (S") $\begin{cases} a \vee b = 60 \\ a+b = 35 \end{cases}$

- 3. a) Montrer que pour tout $n \in \mathbb{N}$; les entiers (n+1) et (n^2+3n+3) sont premiers entre eux.
 - b) En déduire les entiers naturels n tels que (n+1) divise $(n+17)(n^2+3n+3)$.

Exercice 3:

On considère la suite Y_n définie par $Y_n = 4^n + 5^n$,

- 1. a) Montrer que pour tout entier $n, 4^n$ et 5^n sont premiers entre eux.
 - b) Montrer que pour tout entier naturel non nuls x et y, $(x + y) \wedge (4x + 5y) = x \wedge y$.
 - c) En déduire que Y_n et Y_{n+1} sont premiers entre eux.
- 2. a) Montrer que $Y_n \wedge Y_{n+2}$ divise $(9 \times 4^n) \wedge (9 \times 5^n)$.
 - b) En déduire que $Y_n \wedge Y_{n+2} = 1$ ou 3 ou 9.
- 3. a) Montrer par récurrence sur k, Y_{2k+1} est divisible par 9.
 - b) En déduire que $Y_{2k+1} \wedge Y_{2k+3} = 9$.
- 4. a) Montrer par récurrence sur k, que Y_{2k} n'est pas divisible par 3.
 - b) En déduire que $Y_{2k} \wedge Y_{2k+2} = 1$