Exercice N°1:

- 1) Soit dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E) 11x-5y=2.
- a)Vérifier que (2;4) est une solution de (E).
- b)Montrer que (x;y) est une solution de (E) si et seulement si 11(x-2)=5(y-4).
- c)En déduire les solutions de (E)
- 2) Soit n un entier naturel non nul. On pose a=5n+2 et b=7n+5
- a)Calculer 7a-5b et en déduire que P.G.C.D (a; b) =1 ou P.G.C.D (a; b) =11.
- b) Déterminer en utilisant 1) les entiers naturels non nuls n tel que P.G.C.D (a; b)=11.

Exercice N°2:

Le tableau ci-dessous représente les variations d'une fonction f définie sur [0,+∞[.

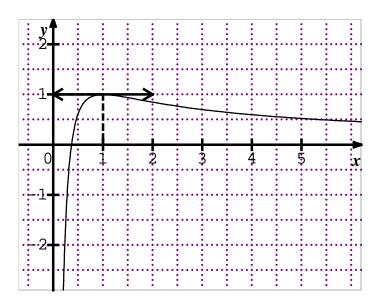
х	0		\sqrt{e}		+00
f'(x)		+	0	-	
f			$\frac{e}{2}$		

Le plan est rapporté à un repère orthonormé $(0, \vec{i}, \vec{j})$. On suppose que la courbe représentative \mathscr{C} de f passe par le point A(1,1) et que la tangente T à cette courbe en ce point a pour équation y = x.

- a) Donner lim f(x).
 - b) Déterminer f (1) et f '(1).
- 2) La fonction f est définie par : $\begin{cases} f(x) = x^2(1 \ln x) \text{ , pour tout } x \in]0, +\infty[\\ f(0) = 0 \end{cases}$
 - a) Etudier la dérivabilité de f à droite en 0 et interpréter graphiquement le résultat obtenu.
 - b) Montrer que la courbe $\mathscr C$ admet une branche parabolique au voisinage de $+\infty$ qu'on précisera.
 - c) Déterminer les coordonnées des points d'intersection de la courbe @et l'axe des abscisses.
 - d) Tracer la tangente T et la courbe \(\varepsilon \).

Exercice N°3:

- .(C) est la courbe représentative de f définie sur $]0, + \infty[$.
- . l'axe d'abscisse est une asymptote à (C) au voisinage + ∞



- 1) Par lecture graphique:
 - a) f(1) et f'(1)
 - b) Dresser le tableau de variation de f
 - c) Résoudre graphiquement : $f(x) \le 0$
- 2) On pose: $f(x) = \frac{a+b \ln x}{x}$
 - a) montrer que : $f'(x) = \frac{b-a-b \ln x}{x^2}$ puis déduire que : a = b = 1
 - b) Soit $F(x) = \ln x + \frac{(\ln x)^2}{2}$ est une primitive de f

<u>puis</u> dresser son tableau de variation