Exercice N°1:

Cocher la réponse exacte

- 1) Si f est une fonction continue sur [1,4] telle que f(1) = -1 et f(4) = 2 alors l'équation f(x) = 0
 - a. n'admet pas de solutions dans [1,4] b. admet une seule solution dans [1,4]
 - c. admet au moins une solution dans [1,4]
- 2) La fonction f définie sur [-1,1] par $f(x) = \frac{2x^2 + 3}{1 + x^2}$ si $x \ne 1$ et f(1) = 2.
 - a. est paire
- b. est impaire

- c. n'est ni paire ni impaire
- 3) Si f et g sont continues sur \mathbb{R} et f(1) = 5 et g(1) = 4 Alors $\lim_{x\to 1} fg(x)$ =
 - **a**. 9

b. 1

- c. 20
- 4) Soit \vec{U} et \vec{V} deux vecteurs tels que : $(\vec{U}-\vec{V})\perp (\vec{U}+\vec{V})$. On a :
 - $|\vec{u}| = |\vec{v}|$
- **b.** $\vec{U} = \vec{V}$

- c. $\overrightarrow{U} \perp \overrightarrow{V}$
- 5) On considère un triangle ABC rectangle en A tel que AB = 5 et AC = 4. Le réel $\overrightarrow{CA}.\overrightarrow{CA}$ est égal à :
 - a. 20
- **b.** 16

c. 25

Exercice N°2:

On considère la fonction f définie par $(x-1)\sqrt{x} - 1$

- 1) Déterminer l'ensemble de définition de f.
- 2) Justifier que f est continue sur l'intervalles [0,+∞[
- 3) a) Montrer que l'équation f(x) = 0 admet dans l'intervalle $[\frac{3}{2}, 2]$ au moins une solution α .
 - **b)** vérifier que $1,7 < \alpha < 1,9$
 - c) donner une valeur approchée par défaut à 10⁻¹ prés de α

Exercice N°3:

La figure ci-contre représente la courbe d'une fonction f définie sur [-2;2].

1) Déterminer graphiquement.

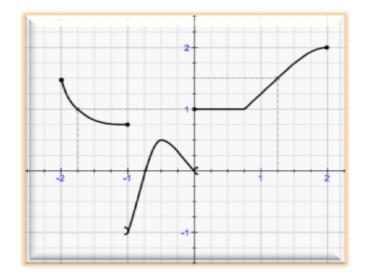
a)
$$\lim_{0^+} f$$
; $\lim_{0^-} f$; $\lim_{1.25} f$

b)
$$f([-2;0])$$
; $f([-1;0])$

- c) Les intervalles où f est continue.
- 2) Résoudre graphiquement l'inéquation :

3) Soit la fonction g définie sur \mathbb{R} par :

$$g(x) = \begin{cases} \frac{x^2 + x - 2}{x^2 + 2x} & si \quad x < -2\\ f(x) & si \quad -2 \le x \le 2\\ \frac{\sqrt{x - 1} - 1}{x - 2} & si \quad x > 2 \end{cases}$$



- a) Montrer que g est continue sur chacun des intervalles $]-\infty$; -2[et]2; $+\infty[$.
- b) Etudier la continuité de g en -2 et 2.
- c) Montrer que 2 est le maximum de g sur $\mathbb R$

Exercice N°4:

Dans la figure ci-contre ABCD un carrée de coté 4cm inscrit dans un cercle de centre O

I = A * B; j = C * I et P le symétrique de O par rapport à I.

(PC) recoupe le cercle en R

1°) a-/ Calculer : $\overrightarrow{AC}.\overrightarrow{BI}$ et $.\overrightarrow{PI}.\overrightarrow{JC}$

b-/ Calculer : $\overrightarrow{OP}.\overrightarrow{OC}$; $\overrightarrow{PA}.\overrightarrow{PC}$ et PC.

c-/ Montrer que : $\overrightarrow{PR}.\overrightarrow{PC}=8$ et en déduire RC.

2°) a-/ Montrer que pour tout point M du plan on a :

$$MA^2 + MB^2 = 2MI^2 + 8$$

b-/ En déduire que $2MC^2 + MA^2 + MB^2 = 4MJ^2 + 28$

c-/ Déterminer E_1 l'ensemble des points M du plan tel que :

$$2MC^2 + MA^2 + MB^2 = 32$$

3°) a-/ Montrer que pour tout point M du plan : $2MC^2 - MA^2 - MB^2 = 4\overrightarrow{MJ}.\overrightarrow{IC} - 8$

b-/ Déterminer E_2 l'ensemble des points M du plan tels que : $2MC^2 - MA^2 - MB^2 = 32$.

