Oscillations électriques forcées

I. Notion de déphasage

on appelle déphasage entre deux fonctions sinusoïdale de phase initiales φ_1 et φ_2 la différence de phase $\Delta \varphi = (\varphi_2 - \varphi_1)$ ou $(\varphi_1 - \varphi_2)$

Définition: deux grandeurs sinusoidales sont dites isochrones lorsqu'elles ont la même période T (ou la même fréquence).

Avance de phase :

Quand une fonction sinusoïdale atteint, toujours, son maximum (donc son minimum et son 0 en allant dans le même sens que l'autre fonction) avant l'autre, elle est dite « en avance de phase ».

Retard de phase :

Quand une fonction sinusoidale atteint, toujours, son maximum (donc son minimum et son 0 en allant dans le même sens que l'autre fonction) après l'autre, elle est dite « en retard de phase ».

Décalage horaire :

A tout déphasage algébrique Δφ correspond un décalage horaire Δt entre les sinusoïdes des deux fonctions étudiées.

Exemple: le graphique ci-contre montre deux sinusoïdes qui présentent un déphasage puisqu'îl y a un décalage horaire.

Généralisation :

$$\begin{cases} u_1(t) = U_{1m} \sin(\omega t + \phi_1) \\ u_2(t) = U_{2m} \sin(\omega t + \phi_2) \end{cases}$$

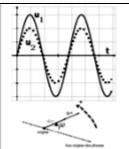
On appelle déphasage entre deux fonctions sinusoïdales synchrones (représentées dans le même système d'axes) : la différence des phases initiales : $\Delta \phi = \phi_1 - \phi_2$: le déphasage de $u_i(t)$ par rapport à $u_i(t)$ qui est une valeur algébrique en radian.

 $\Delta\phi'=-\Delta\phi=\phi_2-\phi_1$: le déphasage de $u_1(t)$ par rapport à $u_1(t).$

La relation entre le déphasage et le décalage horaire :

$$\begin{cases} \Delta \varphi = \varphi_1 - \varphi_2 \\ \Delta \varphi' = \varphi_2 - \varphi_1 \end{cases}$$

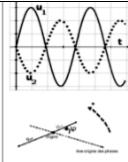
$$\Rightarrow \begin{cases} \sin 0 < \Delta \varphi < \pi \text{ alors } u_1(t) \text{ est en avance sur } u_2(t) \\ \sin - \pi < \Delta \varphi < 0 \text{ alors } u_1(t) \text{ est en retard sur } u_2(t) \end{cases}$$


A tout décalage horaire Δt entre deux fonctions sinusoïdales synchrones correspond un déphasage $\Delta \phi$ tel que :

$$|\Delta \varphi| = \omega \cdot \Delta t = \frac{2\pi}{T} \cdot \Delta t \implies \frac{|\Delta \varphi|}{2\pi} = \frac{\Delta t}{T}$$
;

Grandeurs sinusoïdales en phase :

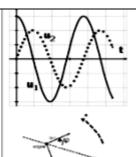
$$\begin{split} \Delta \phi &= \phi_1 - \phi_2 = 2K\pi \text{ avec } K \in \mathbb{Z} \\ \text{signifie que } u_1(t) \text{ et } u_2(t) \text{ atteignent} \\ \text{leurs maximums aux mêmes} \\ \text{instants (aussi leurs minimums ou leurs valeurs nulles) ;} \end{split}$$


le décalage horaire $\Delta t = 0$.

Grandeurs sinusoïdales en opposition de phase :

 $\Delta \phi = \phi_1 - \phi_2 = (2K+1)\pi$; $K \in Z$ signifie que $u_1(t)$ et $u_2(t)$ s'annulent aux mêmes instants mais lorsque l'une est maximale, l'autre est minimale :

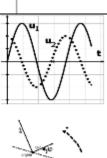
le décalage horaire $\Delta t = \frac{T}{2}$.



3. u₁(t) est en quadrature avance de phase sur u₂(t):

$$\Delta\phi=\phi_1-\phi_2=2K\pi\,+\frac{\pi}{2}>0$$

signifie que $u_1(t)$ s'annule en croissant, au même instant que $u_2(t)$ est minimale; $u_1(t)$ s'annule en décroissant, au même instant que $u_2(t)$ est maximale.


Le décalage horaire est : $\Delta t = \frac{T}{A}$

4. $u_1(t)$ est en quadrature retard de phase sur $u_2(t)$:

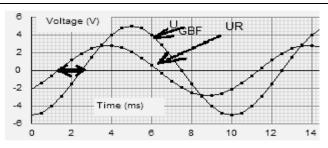
 $\Delta \phi = \phi_1 - \phi_2 = 2K\pi - \frac{\pi}{2} < 0$ signifie que $u_i(t)$ s'annule en croissant, au même instant que $u_i(t)$ est maximale ; $u_i(t)$ s'annule en décroissant, au même instant

que $u_i(t)$ est minimale. Le décalage horaire est : $\Delta t = \frac{\tau}{2}$

II. Oscillations électriques forcées

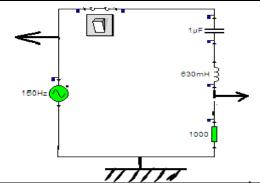
- on réalise le montage électrique suivant
- formé par un générateur a basse fréquence GBF
- . un interrupteur
- un condensateur de capacité C égale à 1 μ F
- une bobine d'inductance L de valeur 0.63 H
- . et un résistor de résistance R=1000 Ω

interrupteur

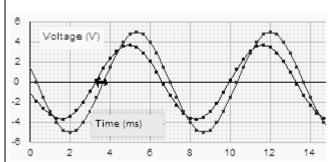

630mH

bobine

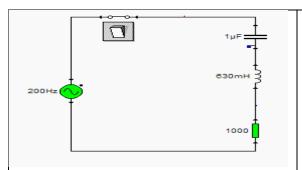
GBF qui delivre
une tension
sinusoidale


1000 Ω

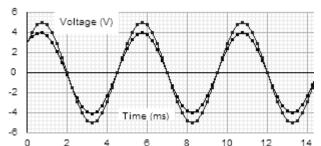
on visualise les tensions aux bornes du générateur et aux bornes du résistor en maintenant la fréquence a la valeur 100Hz, on obtient les courbes suivantes



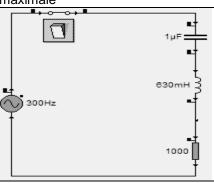
Les deux tensions U_R U_{GBF} oscillent sinusoïdalement et périodiquement , la tension U_R varie avec la même fréquence et donc la même que celle délivré par le GBF pour cette raison on parle <u>d'oscillations électriques</u> <u>forcées</u> , bien que le GBF impose sa propre fréquence sur le résonateur (le circuit RLC) On remarque aussi que la tension U_R est en avance de phase par rapport à la tension U_{GBF}


$$\Delta \varphi = \varphi_{U_R} - \varphi_{U_{GRF}} \ge 0$$

On fait modifier la fréquence de GBF, on remarque toujours que les tensions U_{GBF} et U_R oscillent avec les mêmes fréquences (c'est-àdire 150 Hz) alors on observe que le décalage de temps diminue et bien sûr le déphasage diminue aussi

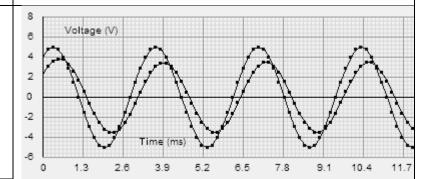

→ toujours l'amplitude de la tension U_R < U _{GBF}

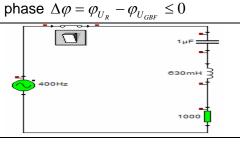
Comme vous le remarquez, à cette valeur particulière de la fréquence N_0 =200Hz , les tensions U $_R$ U $_{GBF}$ oscillent avec un **déphase**

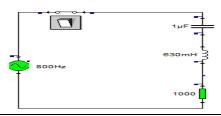

$$\underline{\text{nul.}}\ \Delta \varphi = \varphi_{U_R} - \varphi_{U_{GBF}} = 0$$

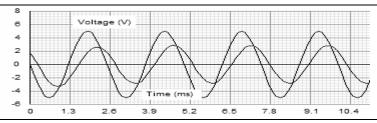
Avec un simple comparaison vous remarquez que la tension U $_{\mbox{\scriptsize Rm}}$ augmente et atteint une valeur maximale , on parle d'un phénomène nouveau appelé résonance d'intensité a la quelle l'intensité maximale I $_{\mbox{\scriptsize m}}$ atteint la valeur maximale

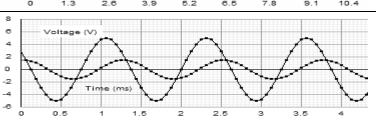
Calculez la valeur $\omega_0 = \frac{1}{\sqrt{LC}} = \dots$


Déduire la valeur $N_0 = \dots$


D'abord comme vous le remarquez la tension $U_{\text{Rm}} \leq U_{\text{GBFm}}$, car vous allez le voir dans le


cours que R
$$\leq \sqrt{R^2 + (L\omega - \frac{1}{C\omega})^2}$$


Et puis vous remarquez aussi que la tension U_R évolue pour des fréquences supérieure à 200 Hz avec un retard de



•

