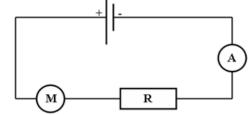
Série n° 8 Structure de l'atome – Loi d'Ohm

Exercice n° 1:

- L'atome de chlore (Cl) a pour numéro atomique Z = 17.
- L'atome de magnésium (Mg) possède deux électrons sur sa couche externe M.
- 1) Donner les structures électroniques sur les diverses couches de ces deux atomes.
- 2) Expliquer la formation des ions simples que peuvent donner les atomes Cl et Mg pour satisfaire la règle de l'octet.
- 3) Donner les symboles de ces ions.
- **4)** Le chlorure de magnésium est un composé ionique formé d'ions magnésiums et d'ions chlorures. Donner sa formule.

Exercice n° 2:

1) Compléter le tableau suivant.

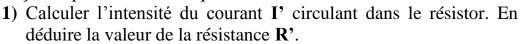

Symbole de l'atome	Hydrogène (H)	Carbone (C)	Silicium (Si)	Chlore (Cl)
Numéro atomique	1	6	14	17
Formule électronique				

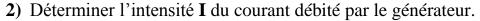
- 2) Déterminer le nombre de liaisons covalentes simples que peuvent établir les atomes Si et Cl.
- 3) a) Donner une représentation de Lewis pour chacune des molécules suivantes en précisant les doublets liants en bleu et les doublets non liants en rouge : SiCl₄ et C₂H₂Cl₂.
 - b) Déterminer le nombre total des doublets dans chacune des molécules précédentes.
 - c) Préciser le nombre et la nature des liaisons établies entre les atomes de ces deux molécules.

Exercice n° 3:

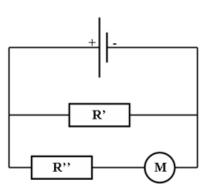
I. On considère le circuit électrique représenté ci-contre. Ce circuit est formé d'un générateur

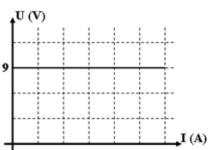
de f.é.m. $\mathbf{E} = 12 \ \mathbf{V}$ et de résistance interne $\mathbf{r} = 2 \ \Omega$, un résistor de résistance \mathbf{R} et un moteur de f.c.é.m. \mathbf{E}' , supposée constante au cours de tout l'exercice, et de résistance interne \mathbf{r}' . L'intensité du courant débité par le générateur est de $\mathbf{2} \ \mathbf{A}$. Le rendement du moteur est de $\mathbf{0.75}$.




- 1) a) Donner la définition d'un dipôle actif.
 - b) Que représente la f.é.m. d'un générateur ?
- 2) Déterminer la puissance électrique totale fournie par le générateur.

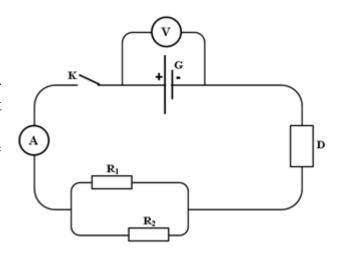
- 3) Sachant que le résistor et le moteur reçoivent la même puissance électrique,
 - a) Montrer que $U_{AB} = U_{BC}$ et calculer cette tension.
 - b) Calculer la valeur de la f.c.é.m. E' du moteur.
 - c) Déduire les valeurs de R et r'.
- 4) Calculer l'énergie électrique dissipée par effet joule dans tout le circuit pendant dix minutes.


Dans la suite de l'exercice on prendra pour le moteur : E' = 3 V et $r' = 0.5 \Omega$.


II. Le même moteur, en série avec un résistor de résistance $\mathbf{R''} = 9.5$ Ω , est placé maintenant en dérivation avec un résistor de résistance $\mathbf{R'}$ (voir schéma ci-contre) et un générateur dont la caractéristique intensité tension est donnée par la figure ci-dessous. Le résistor $\mathbf{R'}$ reçoit la puissance électrique $\mathbf{P'} = 9$ w.

3) On bloque le moteur dans ce même circuit, déterminer l'intensité I'' du courant débité par le générateur.

Exercice n° 4:


- 1) Un circuit comporte en série : un générateur $(E = 5 \ V \ ; \ r = 1 \ \Omega)$, un résistor de résistance $R = 2 \ \Omega$ et un moteur $(E' = 1 \ V \ ; \ r' = 0.5 \ \Omega)$.
 - a) Représenter le schéma du montage de ce circuit.
 - b) Tracer la caractéristique intensité-tension du générateur.
- c) En déduire la valeur de courant de court-circuit \mathbf{I}_{CC} du générateur. Comparer cette valeur avec la valeur théorique.
- 2) On ajoute au circuit précédent un deuxième générateur, en série avec le premier, de caractéristiques inconnues et un ampèremètre.
 - a) Faire un schéma du nouveau montage.
 - **b)** L'ampèremètre indique une valeur de **1,8 A**. Calculer la tension aux bornes du résistor et celle aux bornes du moteur.
 - c) Calculer la tension aux bornes du deuxième générateur.
 - d) Sachant que la somme des tensions aux bornes des deux générateurs est de la forme : $U=7,66+2,2\ I$; En déduire les grandeurs physiques caractérisant le deuxième générateur.
- 3) On ajoute maintenant au circuit un troisième générateur, en dérivation avec le deuxième générateur et lui est identique. Déterminer les grandeurs caractéristiques du générateur équivalent.

Exercice n° 5:

On considère le circuit électrique représenté cicontre, où $\bf D$ est un dipôle électrique inconnu et $\bf G$ est un générateur de fem $\bf E=22~\bf V$.

Lorsque le générateur fourni un courant électrique d'intensité I = 0.5 A, le voltmètre indique U = 20 V.

- 1) L'interrupteur **K** étant ouvert, quelles sont les indications de l'ampèremètre et du voltmètre ?
- 2) L'interrupteur K est maintenant fermé.
 - a) Rappeler la loi d'Ohm relative à un résistor.
 - b) Déterminer la résistance équivalente $R_{\acute{e}q}$ de la branche AB du circuit, sachant que la tension aux bornes du dipôle D est $U_D=12$ V.
 - c) Déduire la valeur de la résistance R_2 sachant que $R_1 = 20 \Omega$.
- 3) Déterminer les intensités des courants I_1 et I_2 traversant respectivement R_1 et R_2 .
- 4) Déterminer la puissance électrique reçue par le résistor \mathbf{R}_1 .
- 5) La puissance dissipée par effet joule dans le dipôle \mathbf{D} est $\mathbf{P}_{\mathbf{J}} = \mathbf{6} \mathbf{W}$.
 - a) Déduire, en le justifiant, la nature du dipôle D.
 - b) Déterminer la grandeur caractéristique du dipôle D.
 - c) Déterminer l'énergie électrique consommée par le dipôle **D** pendant **0,5 heure**.