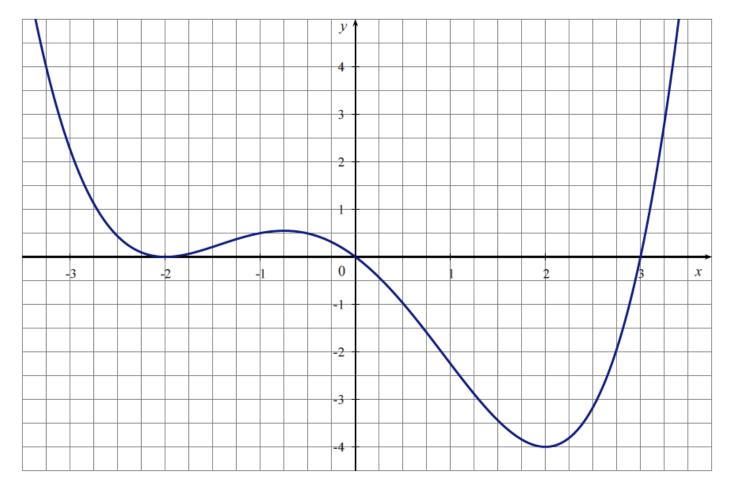
Nom :	Prénom :	Classe :
	1 1 6 11 0 111 1 1 1 1 1 1 1 1 1 1 1 1 1	C1033C

Lycee Echebbi Tadhaman Devoir de contrôle N°1 Prof. : Ouerghi Chokri Durée 2H 3eme Science 1&2

Feuille à rendre

Exercice 1: (3pts)

Dans la figure ci-contre ($\mathscr{C}f$) est la courbe représentative d'une fonction f définie , continue sur $\mathbb R$



1°) Déterminer	f([-2,3])			

2°) soit g une fonction définie sur [-2,0[, par g(x)=f(x)+E(x)

- a) Tracer $\underline{\text{en stylo vert}}$ dans le même repère la courbe représentative ($\mathscr{C}g$) de la fonction g
- b) Déterminer g([-2,0[)

Exercice 2: (9pts)

1°) Soit la fonction f définie par : $f(x) = \frac{\sqrt{4-x^2}-2}{x^3-x}$

- a) Montrer que l'ensemble de définition de f est $[-2,2] \setminus \{-1,0,1\}$
- b) étudier la parité de f
- c) étudier la continuité de f sur son domaine de définition

2°) Soit la fonction g définie par : $g(x) = \begin{cases} \sqrt{x^2 + 1} - x & \text{si } x \leq 0 \\ \frac{2x+3}{x+3} & \text{si } x > 0 \end{cases}$

- a) Montrer que g est continue sur chacun des intervalles $]-\infty$, 0] et]0, $+\infty[$
- b) Montrer que g est décroissante sur $]-\infty$, 0]
- c) En déduire que g est minorée sur $]-\infty$, 0]

3°) a) Pour $x \in \]0$, $+\infty[$, montrer que $g(x)=2-\frac{3}{x+3}$

- b) Montrer que g est croissante sur $]\ 0\ ,+\infty[$
- a) Montrer que g est continue en 0
- d) En déduire que g est bornée sur]0, $+\infty$

Exercice 3: (8pts)

Soit ABC un triangle rectangle en A tel que AB=4 et AC =2

On désigne par I le milieu du segment[AB] et par E le symétrique de C par rapport à A

- 1°) a) Faire une figure
 - b) Calculer BC puis $\overrightarrow{BA}.\overrightarrow{BC}$
 - c) En déduire la mesure en radians de l'angle $A\widehat{B}\,\mathcal{C}\,$ à 10^{-3} prés
- 2°) a) Calculer $\overrightarrow{CI} \cdot \overrightarrow{IA}$ et $\overrightarrow{CI} \cdot \overrightarrow{AE}$
 - b) En déduire que (CI) et (IE) sont perpendiculaires
- 3°) Déterminer l'ensemble $\Delta = \{M \in P / \overrightarrow{MA}. \overrightarrow{AC} = \overrightarrow{AM}. \overrightarrow{CB}\}$
- 4°) Soit T le milieu de [AE] . La parallèle à (BC) passant par T coupe (AB) en H
 - a) Calculer AH
 - b) Ecrire H comme barycentre des points A et B affectés des coefficients que l'on précisera.
 - c) Montrer que $3MA^2 MB^2 = 2MH^2 24$
 - d) Déterminer et construire l'ensembles $\Phi = \{ M \in P / 3MA^2 MB^2 = -16 \}$
 - e) Déterminer la position relative de Δ par rapport à Φ

Correction de l'exercice 2 : (9pts)

1°) a) $D_f = \{ x \in \mathbb{R} : 4 - x^2 \ge 0 \text{ et } x^3 - x \ne 0 \}$ équivaut à $x^2 \le 4 \text{ et } x (x^2 - 1) \ne 0$ équivaut à $|x| \le 2 \text{ et } x (x - 1)(x + 1) \ne 0$

b)
$$x \in [-2, 2] \setminus \{-1, 0, 1\}$$
 $et - x \in [-2, 2] \setminus \{-1, 0, 1\}$

$$f(-x) = \frac{\sqrt{4 - (-x)^2} - 2}{(-x)^3 - (-x)} = \frac{\sqrt{4 - x^2} - 2}{-x^3 + x} = -\frac{\sqrt{4 - x^2} - 2}{x^3 - x} = -f(x)$$
 D'où f est impaire

c) $x\mapsto 4-x^2$ fonction polynome continue sur $\mathbb R$, en particulier sur [-2 , 2] \setminus $\{-1$, 0 , $1\}$

 $comme\ 4-x^2\ positif\ sur\ [-2,2]\setminus \{-1,0,1\}\ donc\ x \mapsto \sqrt{4-x^2}\ est\ continue\ sur\ [-2,2]\setminus \{-1,0,1\}$

 $x \mapsto -2$ fonction constante continue sur \mathbb{R} , en particulier sur $[-2,2] \setminus \{-1,0,1\}$

 $x \mapsto x^3 - x$ fonction polynome continue sur \mathbb{R} , en particulier sur $[-2,2] \setminus \{-1,0,1\}$

comme $x^3 - x$ non nul sur $[-2, 2] \setminus \{-1, 0, 1\}$ donc $x \mapsto \frac{1}{x^3 - x}$ est continue sur $[-2, 2] \setminus \{-1, 0, 1\}$

Par suite f est continue sur $[-2,2] \setminus \{-1,0,1\}$ comme étant produit de deux fonctions continues sur D_f

2°) a) $x\mapsto x^2+1$ fonction polynome continue sur $\mathbb R$, en particulier sur $]-\infty$, 0]

comme
$$x^2 + 1$$
 positif sur $]-\infty$, 0 donc $x \mapsto \sqrt{x^2 + 1}$ est continue sur $]-\infty$, 0

 $x \mapsto -x$ fonction affine continue sur \mathbb{R} , en particulier sur $]-\infty$, 0

Par suite g est continue $sur \,]-\infty$, $0 \,]$ comme étant somme de deux fonctions continues $sur \,]-\infty$, $0 \,]$

$$x\mapsto rac{2x+3}{x+3}\ \ fonction\ rationnelle\ continue\ sur\ \mathbb{R}\setminus\{-3\}$$
 , en particulier sur $]\ 0$, $+\infty[$

Par suite g est continue sur] $0, +\infty$

b) Soient $a < b \le 0$ équivaut à $a^2 > b^2$ équivaut à $a^2 + 1 > b^2 + 1$ équivaut à $\sqrt{a^2 + 1} > \sqrt{b^2 + 1}$

donc
$$x \mapsto \sqrt{x^2 + 1}$$
 est décroissante sur $]-\infty$, 0

Soient $a < b \le 0$ équivaut à -a > -b d'ou $x \mapsto -x$ est une fonction décroissante sur $]-\infty$, 0]

Par suite g est décroissante $sur]-\infty$, 0] comme étant somme de deux fonctions décroissante $sur]-\infty$, 0]

c) On a g continue et décroissante sur $]-\infty$, 0 donc g est minorée par g(0) or g(0)=1 d'ou $g(x) \le 1$

3°) a)
$$2 - \frac{3}{x+3} = \frac{2(x-3)-3}{x-3} = \frac{2x+3}{x+3} = g(x)$$

b) 0 < a < b équivaut à a + 3 < b + 3 équivaut à $\frac{1}{a+3} > \frac{1}{b+3}$ équivaut à $\frac{-3}{a+3} < \frac{-3}{b+3}$ $2 - \frac{3}{x+3}$ $2 - \frac{3}{x+3}$

équivaut à $2-\frac{3}{a+3}$ < $2-\frac{3}{b+3}$ Par suite g est croissante sur] 0, $+\infty$ [

c) $\lim_{x\to 0^+} \frac{2x+3}{x+3} = 1 = g(0)$ Par suite g est continue en 0

d) our $x \in]0$, $+\infty[$, $-\frac{3}{x+3} < 0$ équivaut à $2-\frac{3}{x+3} < 2$ or g continue et croissante $sur[0,+\infty[$, $donc g(0) \le g(x)$

D'ou 1 < g(x) < 2 donc g est bornée sur $[0, +\infty[$