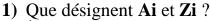
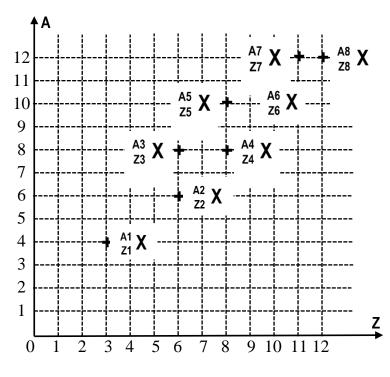
Série n° 5

Schéma de Lewis – Les récepteurs passifs


Exercice n° 1:

- 1) Trouver le numéro atomique de chacun des éléments chimiques suivants :
 - H⁺ ne possède aucun électron.
 - C possède 4 électrons célibataires sur la couche L
 - N^{3-} possède la même structure électronique que le gaz rare néon (Ne : Z = 10).
 - O s'il gagne deux électrons il aura la même structure électronique que N³-.
- 2) Donner le schéma de Lewis correspondant à chacun des atomes des éléments chimiques précédents.
- 3) Donner le schéma de Lewis des molécules suivantes : H₂O₂ C₂H₆ CH₃N C₃H₈O.

Exercice n° 2:


Soit le diagramme ci-contre, où ${}^{A_i}_{Z_i}X$ représentent des noyaux d'atomes d'un certain nombre d'éléments chimiques.

On donne $e = 1.6.10^{-19} C$.

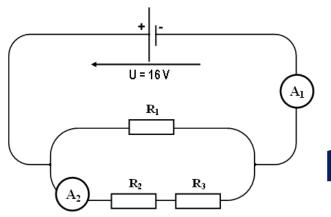
- À partir du diagramme déterminer Z et A pour chaque noyau.
- **3**) On donne:

Élément	Н	He	Li	Be	В	C
Z	1	2	3	4	5	6
Élément	N	О	F	Ne	Na	Mg
Z	7	8	9	10	11	12

- a) Identifier les éléments chimiques qui figurent dans le diagramme.
- **b**) Donner la structure électronique des électrons des atomes possédant la couche **M** comme couche de valence, puis donner leurs schémas de Lewis respectifs.
- 4) a) Qu'appelle-t-on isotopes d'un élément chimique ?
 - b) Dégager du diagramme les isotopes d'un même élément chimique.
- 5) Les ions sodium et oxygène possède la même configuration électronique.
 - a) Donner la formule électronique de ces deux ions.
 - **b)** Donner le symbole de chaque ion.
 - c) Déterminer la charge portée par chaque ion.
- 6) Donner le schéma de Lewis de la molécule de dioxyde d'azote formée par un atome d'azote (N) et des atomes d'oxygène (O). Écrire sa formule.

Exercice n° 3:

On trace ci-dessous les caractéristiques intensité-tension de deux résistors \mathbf{R}_1 et \mathbf{R}_2 .



- 1) Déterminer graphiquement les valeurs des deux résistances R_1 et R_2 .
- 2) Déterminer la valeur de la résistance équivalente à l'association de \mathbf{R}_1 et \mathbf{R}_2 en série, puis celle de leur association en dérivation.
- 3) Tracer les deux caractéristiques de ces deux résistances équivalentes sur le même graphe ci-dessus.

Exercice n° 4:

On réalise le circuit électrique ci-contre :

- L'ampèremètre A_1 indique $I_1 = 2 A$.
- L'ampèremètre A_2 indique $I_2 = 0,4$.
- La tension aux bornes de \mathbf{R}_2 est $\mathbf{U}_2 = \mathbf{6} \ \mathbf{V}$.

- 1) Calculer la résistance équivalente de l'association de R_1 , R_2 et R_3 .
- 2) Déterminer les résistances R_1 , R_2 et R_3 .
- 3) Avec le même générateur et les mêmes résistors dans une nouvelle association, on réalise un nouveau montage.
 - a) Schématiser le nouveau circuit de façon que la nouvelle association des trois résistors permette d'obtenir la plus grande puissance dissipée par effet joule possible.
 - **b**) Calculer dans ce cas cette puissance.
 - c) Calculer l'intensité du courant traversant chaque conducteur ohmique dans ce cas.

