AS: 2014/2015

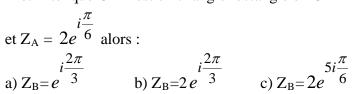
Durée: 2h

Exercice $n^{\circ}1$: (3 points)

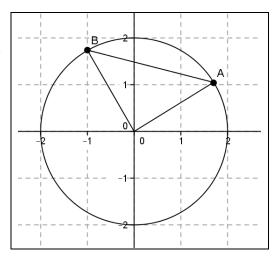
Choisir l'unique bonne réponse et sans justification.

- 1) si f est une fonction continue sur [-1, 1] et g est une fonction continue sur IR alors la fonction gof est continue sur
 - a) [-1,1]
- b) IR\ $\{-1,1\}$ c) IR
- 2) Soit deux vecteurs \vec{u} et \vec{v} d'affixes respectifs $Z_{\vec{u}} = 3e^{i\frac{4\pi}{9}}$ et $Z_{\vec{v}} = 2e^{i\frac{-5\pi}{9}}$ alors
 - a) \vec{u} et \vec{v} sont colinéaires
- b) u et v sont orthogonaux
- 3) Le plan complexe set muni d'une repère orthonormé (O, \vec{i} , \vec{j}).On donne dans la figure ci contre

un cercle de centre O et de rayon 2 et deux points A et B tel que OAB est un triangle rectangle en O



c)
$$Z_B = 2e^{5i\frac{\pi}{6}}$$



Exercice $n^{\circ}2$: (6 points)

Soit la fonction f définie sur IR par $f(x) = \begin{cases} x^2 + xSin(\frac{1}{x}) + 1 & si \ x > 0 \\ x^3 + x + 1 & si \ x \le 0 \end{cases}$

- 1)a) Montrer que pour tout $x \in]0,+\infty[$ on a : $x^2-x+1 \le f(x) \le x^2+x+1$
 - b) Déduire $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to +\infty} f(x)$
 - c) Montrer que f est continue en 0.
- 2) a) Calculer f'(x) pour tout $x \in]-\infty, 0]$.
 - b) Monter que l'équation f(x) = 0 admet dans $-\infty,0$ une unique solution α puis vérifier que : $-0.7 < \alpha < -0.6$.
 - c) Vérifier que : $\alpha^3 = -1 \alpha$
- 3) Calculer les limites suivantes : $\lim_{x \to +\infty} f(\frac{x+1}{x^2})$ et $\lim_{x \to 0} f(\frac{x+1}{x^2})$

Exercice n°3: (6 points)

- 1) Résoudre dans \hat{C} l'équation (E) : Z^2 -2Z+4=0
- 2) Le plan complexe est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) . On considère les points

A, B et C d'affixes respectifs : $Z_A = 1 + i\sqrt{3}$, $Z_B = 2ie^{i\frac{\pi}{3}}$ et $Z_C = 2(1+i)e^{i\frac{\pi}{3}}$.

- a) Ecrire Z_A et Z_B sous forme exponentielle.
- b) Construire les points A et B dans le repère.
- c) Monter que OAB est un triangle rectangle et isocèle en O.
- d) Montrer que : $Z_C = Z_A + Z_B$
- e) Déduire que OACB est un losange.
- 3) soit le point M d'affixe $Z_M = e^{2i\theta} + 1$ où $\theta \in [0, \pi]$
- a) Vérifier que : $Z_M = 2Cos(\theta)e^{i\theta}$
- b) Déterminer la valeur de θ pour que O, A et M soit alignés.

Exercice n°4: (5 points)

Soit la suite (U_n) définie sur IN par : $U_0 = 1$ et $U_{n+1} = \frac{U_n}{1 + U_n}$

- 1) a) Montrer que pour tout n on a : $0 \le U_n \le 1$.
 - b) Etudier la monotonie de la suite U.
 - c) Déduire que U est convergente puis calculer sa limite.
 - d) Montrer par récurrence que pour tout n on a : $U_n = \frac{1}{n+1}$
- 2) Soit la suite (S_n) définie sur IN par :

$$S_n = \sum_{K=0}^{n} (-1)^K U_K = \sum_{K=0}^{n} \frac{(-1)^K}{K+1} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^n}{n+1}$$

- a) Montrer que : $S_{2n+2} S_{2n} = \frac{-1}{2n+2} + \frac{1}{2n+3}$ puis déduire que la suite (S_{2n}) est décroissante.
- b) Montrer que la suite (S_{2n+1}) est croissante.
- c) Montrer que pour tout n on a : $S_{2n+1} \le S_{2n}$
- d) Déduire que les suites (S_{2n}) et (S_{2n+1}) sont adjacentes.
- e) Déduire que la suite (S_n) est convergente.

Bon travail