Durée: 3h

Exercice n°1:(3 points)

Choisir l'unique bonne réponse et sans justification.

1)
$$\int_{0}^{1} \frac{1}{2x+1} dx$$
 égal à : a) $\ln \sqrt{3}$ b) $\ln(\frac{3}{2})$ c) $\ln 3$

a)
$$\ln \sqrt{3}$$

b)
$$\ln(\frac{3}{2})$$

2) L'équation 2lnx +1 =0 admet comme solution :

a)
$$\frac{1}{2}$$

a)
$$\frac{1}{2}$$
 b) $\frac{1}{\sqrt{e}}$ c) \sqrt{e}

3) La fonction F définie sur]0, $+\infty$ [par F(x) = $\int_{-\infty}^{x^2} \frac{1}{\sqrt{t}} \ln t \, dt$

F est dérivable sur]0, $+\infty$ [et on a : a) $F'(x) = 4\ln x$ b) $F'(x) = \frac{2\ln x}{x}$ c) $F'(x) = 2x\ln x$

Exercice n°2: (5 points)

L'espace est muni d'un repère orthonormé direct (0, i, j, k).

On considère les points A(1,1,0), B(2,-1,1), C(1,-1,2), K(1,0,1) et I(3,2,3).

- 1) a) Calculer les composantes du vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}$ et déduire que A, B et C ne sont pas alignés.
 - b) Soit le plan P = (ABC). Montrer que P : x + y + z 2 = 0.
 - c) montrer que (IK) est perpendiculaire à P et que K est leur point d'intersection.
 - d) Que représente le point K? Justifier votre réponse.
- e) Montrer que K est le centre du cercle ζ circonscrit au triangle ABC. 2) Soit l'ensemble $S: x^2 + y^2 + z^2 6x 4y 6z + 8 = 0$.
- - a) Montrer que S est une sphère de centre I et dont on précisera son rayon.
 - b) Montrer que Set P sont sécantes et que $S \cap P = \zeta$.
- 3) Soit le point J (-1,-2,-1).
 - a) Vérifier que K est le milieu du segment [I J].
 - b) Déterminer une équation cartésienne de la sphère de centre J et sécante à P en ζ.
 - c) Calculer le volume du solide IABCJ (hexaèdre) formé par les deux tétraèdres IABC et JABC

Exercice n°3: (6 points)

- A) Soit la fonction g définie sur $]0, +\infty$ [par $g(x) = x^2 1 + \ln x$.
- 1) Etudier les variations de g.
- 2) Calculer g(1) puis déduire le tableau de signe de g(x).
- B) Soit la fonction f définie sur]0,+ ∞ [par f(x) = $x 1 \frac{\ln x}{x}$ et on désigne par (C_f) la courbe de f dans un repère orthonormé.
- 1) Calculer les limites de f en 0^+ et $+\infty$.
- 2) Montrer que pour tout $x \in]0, +\infty[: f'(x) = \frac{g(x)}{r^2}]$ puis dresser le tableau de variation de f.
- 3) a) Montrer que la droite D : y = x 1 est asymptotes oblique à (C_f) au voisinage de $+\infty$.
- b) Etudier la position relative de (C_f) et D.
- 4) Tracer (C_f) et D.
- C) Soit un réel $t \in [1, +\infty)$ [et soit A (t) l'aire de la partie du plan limite par (C_f) , l'axe des abscisses et les droites d'équations x=1 et x=t.

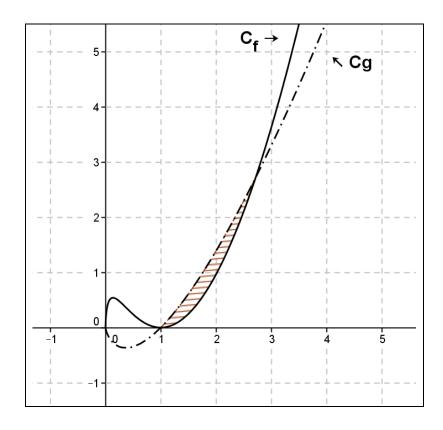
Page 1 sur 3

- 1) Montrer que A (t) = $\frac{1}{2}t^2 t \frac{1}{2}(\ln t)^2 + \frac{1}{2}$.
- 2) Calculer $\lim_{t\to +\infty} A(t)$.

Exercice n°4: (6 points)

Soit la suite I définie sur IN par : $I_n = \int_{1}^{e} x(\ln x)^n dx$

- 1) a) Par une intégration par partie, montrer que : $I_{n+1} = \frac{1}{2}e^2 \frac{1}{2}(n+1)I_n$
 - b) Vérifier que $I_0 = \frac{1}{2}e^2 \frac{1}{2}$ puis déduire les valeurs de I_1 et I_2 .
- 2) Soit les fonctions définis sur $]0,+\infty[$ par $f(x)=x(\ln x)^2$ et $g(x)=x\ln x$. Le graphe ci-dessous représente les courbes (C_f) et (C_g) celles des fonctions f et g dans un repère orthonormé.
 - a) Par calculs, déterminer les abscisses des points d'intersections de (C_f) et C_g.
 - b) Graphiquement, dresser le tableau de signe de [f(x) g(x)].
 - c) Soit A l'aire de la partie hachurée dans le graphe. Montrer que $A = I_1 - I_2$ puis déduire sa valeur.
- 3) soit la fonction F définie sur $[0, +\infty)$ par $F(x) = \begin{cases} \frac{1}{2}x^2(\ln x 1)^2 & \text{si} & x > 0 \\ F(0) = 0 \end{cases}$
 - a) Montrer que F est continue à droite en 0.
 - b) Etudier la dérivabilité de F à droite en 0.
 - c) Montrer que pour tout $x \in]0$, $+\infty [$ on a : F'(x) = f(x) g(x).
 - d) Dresser le tableau de variation de F.



Bon travail

