LYCÉE FERIANA

HAMDI-M <IFI-D

DEVOIR DE SYNTHÈSE N° 2 MATHÉMATIQUES

4^{ème}sciences 04-03-2008-

EXERCICE 1(3pts)

Pour chaque question, une et une seule des 3 propositions a, b, et c est exacte. On demande d'indiquer la quelle sans aucune justification.

1) Soit
$$f(x) = \frac{2x^3 - 1}{x^2}$$
, $x \in]0, +\infty[$ la primitive de f qui s'annule en 1 est :
a) $F(x) = \frac{x^3 - 2x}{x}i$ b) $F(x) = \frac{x^3 - 1}{x}$ c) $F(x) = \frac{x^3 - 2x + 1}{x}$

a)
$$F(x) = \frac{x^{3} - 2x}{x}i$$

b)
$$F(x) = \frac{x^{8}-1}{x}$$

c)
$$F(x) = \frac{x^{8}-2x+1}{x}$$

2) soit $f(x) = 2\sin x - 1$, $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ on admet que f est une bijection de $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ sur]-3,1[la fonction f^{-1} est dérivable sur]-3,1[

a)
$$(f^{-1})' = \frac{1}{\sqrt{1-x^2}}$$

b)
$$(f^{-1})' = \frac{1}{\sqrt{x^2 + x}}$$

a)
$$(f^{-1})' = \frac{1}{\sqrt{1-x^2}}$$
 b) $(f^{-1})' = \frac{1}{\sqrt{x^2 + x - 3}}$ c) $(f^{-1})' = \frac{1}{\sqrt{-x^2 - 2x + 3}}$

3) soit P :x-y+2z-4 =0 et la droite D = $(\overrightarrow{u} \begin{pmatrix} m \\ 2+m \\ 1 \end{pmatrix}$, A(1,1,2)) pour tout réels mon a :

a)
$$D \cap P = \emptyset$$

a)
$$D \cap P = \phi$$
 b) $D \subset P$ c) D et P sécante

Exercice2

soit f la fonction définie sur IR par $f(x) = x + \frac{2x}{\sqrt{x^2+1}} (C_f)$ la courbe répresentative de la fonction f dans un repère orthonormé (O, \dot{i}, \dot{j}) . (Unité graphique 1cm)

1) montrer que f est une fonction impaire.

2) a) dresser le tableau de variation de f sur IR.

b) montrer que f est une bijection de IR sur IR.

3)a) montrer que la droite D : y=x+2 est une asymptote à (C_f) au voisinage de $(+\infty)$

b) montrer que la droite D': y=x-2 est une asymptote à (C_f) au voisinage de $(-\infty)$

4) a) étudier la position de (C_f) et la droite Δ y=x.

b) donner l'équation de la tangente (T) à (C_f) au point O(0,0)

c) tracer D, D', Δ , T et (C_f).

5) calculer en cm 2 l'aire de la partie du plan limitée par (C_f) , la droite Δ et les droites d'équations x=0 et x=2

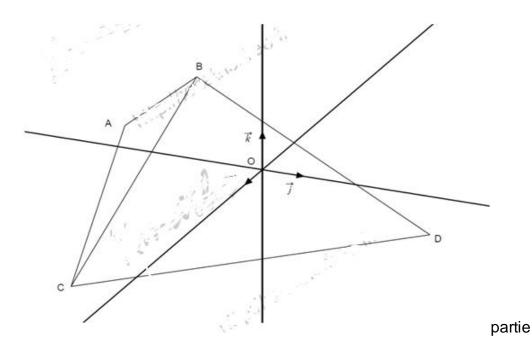
6) a) tracer $(C_{f^{-1}})$ courbe répresentative de f^{-1} dans le même repère.

b) Calculer l'aire du domaine du plan limitée par (C_f) , $(C_{f^{-1}})$ et les droites d'équations x=0 et x=2.

Exercice N°3

L'espace est rapporté à un repère orthonormé $(O, \hat{i}, \vec{j}, \vec{k})$.soient les points

A(3,-2,2); B(6,1,5) et C(6,-2,-1)



Partie A

- 1) montrer que le triangle ABC est rectangle.
- 2) soit Ple plan d'équation cartesienne x+y+z-3=0

Montrer que P est orthogonal ala droite (AB) et passant par le point A.

3) soit Q le plan orthogonal à la droite (AC) et passant par lepoint A.

Déterminer une équation cartesienne de Q.

4) Déterminer une représentation parametrique de la droite $\Delta = P \cap Q$.

PartieB

- 1) soit D le point de coordonnées (0,4,-1) . Montrer que la droite (AD) est perpendiculire au plan (ABC).
- 2) calculer le volume du tertaèdre ABDC.
- 3) montrer que l'angle geométrique $\widehat{BDC} = \frac{\pi}{4}$
- 4) a) calculer l'aire du triangle BDC.
 - b) en deduire la distance du point A au plan (BDC)

Exercice 4

l'éspace ξ est rapporté à un répere orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$

Soit
$$S = M(x, y, z) \in \xi : x^2 + y^2 + z^2 - 2x + 4y + 4z + 5 = 0$$

- 1) Montrer que S est une sphère dont on déterminera le centre C et le rayon R.
- 2) Soit P le plan dont une équation cartésienne est : x-2y+2z+2=0
- a) Montrer que l'intersection de la sphère S est le plan P est un cercle ξ.
- b) Déterminer les cordonnées du centre A et le rayon r du cercle ξ.
- 3) Soit M(a, b, -1) un point de la sphère S où a et b sont deux réels et Q le plan dont une équation cartésienne est : (a-1)x + (b+2)y + z a + 2b + 3 = 0.
- a) Montrer que M appartient au plan Q.
- b) Montrer que Set Q sont tangent S en M.

Exercice5

 (O, \vec{i}, \vec{j}) un repère orthonormé ; f une fonction continue sur $[0, +\infty]$; F la primitive de f sur $[0, +\infty]$, F(2) = 3 , F(0) = 0, $\lim_{x \to +\infty} F(x) = 5$

La courbe (C_f)ci-après représente la fonction f

- 1) Montrer que f réalise une bijection | ,+∞ | sur un intervalle J que l'on déterminera
- 2) (C') la courbe représentative de f^1 : fonction réciproque de f. calculer A l'aire de la partie du plan limitée par (C_f) et (C')
- 3) A_{λ} l'aire de la partie du plan limitée par (C_f) ; x= 2 x= λ et y=3 avec $\lambda > 2$
- a) Déterminer $F(\lambda)$ pour que $A=A\lambda$
- b) calculer limite de A_{λ} quand λ tend vers + ∞