Lycée Secondaire El Ksour	<u>Série d'exercices</u> (exponentielle)	Prof: Boupouraa Chaouki
Année Scolaire 2013-2014	Mathématiques	<u>Bac</u>

Exercice N°1

Équations et inéquations : Résoudre les équations ou les inéquations suivantes :

1)
$$e^{3-x} = 1$$

6)
$$e^{\sin x} = e^{\frac{1}{2}}$$

11)
$$e^x \le \frac{1}{e^x}$$

2)
$$e^{2x^2+3} = e^{7x}$$

7)
$$e^{x^2} = (e^2)^3 e^{-x}$$

3)
$$2e^{-x} = \frac{1}{e^x + 2}$$

8)
$$e^{x^2} = e^{x-2}$$

12)
$$(e^x - 1)e^x > e^x - 1$$

4)
$$e^{x^3} = e^8$$

9)
$$e^{x^2} \le \frac{1}{e^2}$$

13)
$$e^{2x} < e^x$$

5)
$$e^{x+1} = e^{\frac{1}{x}}$$

10)
$$(e^x)^3 \le e^{x+6}$$

14)
$$3(e^x)^2 + e^x - 4 < 0$$

Exercice N°2

Dérivées Déterminer les dérivées suivantes :

1)
$$f(x) = (x^2 - 2x)e^x$$

1)
$$f(x) = (x^2 - 2x)e^x$$
 4) $f(x) = \frac{e^x}{e^x - x}$ 7) $f(x) = 2(x - 1)e^{x-1}$
2) $f(x) = \frac{1}{x}e^x$ 5) $f(x) = x^2 - 2(x - 1)e^x$ 8) $f(x) = \cos xe^{\sin x}$

7)
$$f(x) = 2(x - 1)e^{x-1}$$

8) $f(x) = \cos x e^{\sin x}$
9) $f(x) = e^{\frac{1+x}{1+x^2}}$

$$2) \ f(x) = \frac{1}{x}e^x$$

5)
$$f(x) = x^2 - 2(x - 1)e^{-x}$$

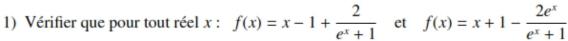
8)
$$f(x) = \cos x e^{\sin x}$$

3)
$$f(x) = \frac{e^x - 1}{2e^x + 1}$$
 6) $f(x) = xe^{\frac{1}{x}}$

$$6) f(x) = xe^{\frac{1}{x}}$$

9)
$$f(x) = e^{\frac{1+x}{1+x^2}}$$

f est la fonction définie sur \mathbb{R} par : $f(x) = x - \frac{e^x - 1}{e^x + 1}$



- Étudier les limites en +∞ et -∞.
- Démontrer que f est impaire.
- Étudier les variation de f sur [0, +∞[.
- Tracer la tangente à C au point d'abscisse x = 0, puis la courbe C.

Exercice N°4

Les parties B et C sont indépendantes.

Bonsonnad Charuki On note \mathbb{R} l'ensemble des nombres réels et on considère la fonction f définie sur \mathbb{R} par :

$$f(x) = xe^{x-1} + 1$$
.

On note \mathscr{C} sa courbe représentative dans un repère orthonormé $\left(O; \vec{i}, \vec{j}\right)$

Partie A : étude de la fonction

- Déterminer la limite de f en $+\infty$.
- 3. On admet que f est dérivable sur \mathbb{R} et on note f' sa fonction dérivée. Montrer que, pour tout réel x, $f'(x) = (x+1)e^{x-1}$.
- Étudier les variations de f sur \mathbb{R} et dresser son tableau de variation sur \mathbb{R} .

Partie B: recherche d'une tangente

Soit a un réel strictement positif. Le but de cette partie est de rechercher s'il existe une tangente à la courbe \mathscr{C} au point d'abscisse a, qui passe par l'origine du repère.

- 1. On appelle T_a la tangente à \mathscr{C} au point d'abscisse a. Donner une équation de T_a .
- 2. Démontrer qu'une tangente à $\mathscr C$ en un point d'abscisse a strictement positive passe par l'origine as Charuki si et seulement si a vérifie l'égalité

$$1 - a^2 e^{a-1} = 0.$$

3. Dans cette question, toute trace de recherche même incomplète sera prise en compte dans l'évaluation.

Démontrer que 1 est l'unique solution sur l'intervalle $]0, +\infty[$ de l'équation

$$1 - x^2 e^{x - 1} = 0.$$

Donner une équation de la tangente recherchée.

Le graphique donné en Annexe 1 représente la courbe $\mathscr C$ de la fonction f dans un repère orthonormé

- Construire sur ce graphique la droite Δ d'équation y=2x. On admet que la courbe \mathscr{C} est au-dessus de la droite Δ . Hachurer le domaine $\mathcal D$ limité par la courbe $\mathscr C$, la droite Δ , la droite d'équation x = 1 et l'axe des ordonnées
- On pose $I = \int_0^1 xe^{x-1} dx$. Montrer à l'aide d'une intégration par parties que $I = \frac{1}{e}$.
- En déduire la valeur exacte (en unités d'aire) de l'aire du domaine \mathcal{D} .

