FONCTION LOGARITHME 27-02-2014

Correction Série D'exercices Ln

Exercice I

Equation

1) a)
$$ln(x + 1) + ln(x + 3) = ln(x + 7)$$

Conditions d'existence :
$$\begin{cases} x+1>0 \\ x+3>0 \\ x+7>0 \end{cases} \Leftrightarrow \begin{cases} x>-1 \\ x>-3 \\ x>-7 \end{cases} \Leftrightarrow \begin{cases} x>-1 \\ D_f=]-1; +\infty[$$

$$x \in D_f$$
, $\ln [(x+1)(x+3)] = \ln(x+7)$
comme la fonction ln est croissante sur $0 + \infty$
 $(x+1)(x+3) = x+7$
 $x^2 + 3x + x + 3 = x + 7$
 $x^2 + 3x - 4$

 $x^2 + 3x - 4$ $x_1 = 1 \in D_f$ racine évidente P = -4 donc $x_2 = -4$

b)
$$ln(3x^2 - x - 2) > ln(6x + 4)$$

Racines de $3x^2 - x - 2$, $x_1 = 1$ (racine évidente) $P = -\frac{2}{3}$ donc $x_2 = -\frac{2}{3}$

Racines de
$$3x^2 - x - 2$$
, $x_1 = 1$ (racine évidente) $P = -\frac{1}{3}$ donc $x_2 = -\frac{1}{3}$
Conditions d'existence :
$$\begin{cases} 3x^2 - x - 2 > 0 \\ 6x + 4 > 0 \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ 0 > \frac{1}{3} \end{cases} \end{cases}$$

$$3x^2 - x - 2 = 6x + 4$$
$$3x^2 - 7x - 6 > 0$$

On calcule: $\Delta = 49 + 72 = 121 = 11^2$ on a

$$x_1 = \frac{7+11}{6} = 3$$
 ou $x_2 = \frac{7-11}{6} = -\frac{2}{3}$

On prend l'intersection de l'extérieur des racines et de D_f

$$S = \left(\left] - \infty; -\frac{2}{3} \left[\cup \right] 3; + \infty [\right) \cap]1; + \infty [=]3; + \infty [$$

2) a) On développe :

$$(x+1)(2x^2 - 5x + 2) = 2x^3 - 5x^2 + 2x + 2x^2 - 5x + 2 = 2x^3 - 3x^2 - 3x + 2$$

b) On pose :
$$X = \ln x$$
, l'équation devient $2X^3 - 3X^2 - 3X + 2 = 0$

D'après 2a), on a alors :
$$(X + 1)(2X^2 - 5X + 2) = 0$$

$$X + 1 = 0 \Leftrightarrow X = -1$$
 ou

$$2X^2 - 5X + 2 = 0$$
 on calcule $\Delta = 25 - 16 = 9 = 3^2$ on a

$$X_1 = \frac{5+3}{4} = 2$$
 ou $X_2 = \frac{5-3}{4} = \frac{1}{2}$

On revient à x: $\ln x = -1$ ou $\ln x = 2$ ou $\ln x = \frac{1}{2}$

On trouve alors: $x = e^{-1} = \frac{1}{e}$ ou $x = e^2$ ou $x = e^{\frac{1}{2}} = \sqrt{e}$ soit $S = \left\{ \frac{1}{e}; \sqrt{e}; e^2 \right\}$

EXERCICE II

Partie A

1) Limite de g en 0 et en $+\infty$

$$\lim_{\substack{x \to 0 \\ x > 0}} 2x^3 - 1 = -1$$

$$\lim_{\substack{x \to 0 \\ x > 0}} 2 \ln x = -\infty$$
Par somme
$$\lim_{\substack{x \to 0 \\ x > 0}} 2x^3 - 1 = +\infty$$

$$\lim_{\substack{x \to 0 \\ x > 0}} 2 \ln x = +\infty$$
Par somme
$$\lim_{\substack{x \to 0 \\ x > 0}} 2 \ln x = +\infty$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} 2x^3 - 1 = +\infty$$
 Par somme
$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} 2\ln x = +\infty$$

La fonction g est la somme de deux fonctions croissantes sur $]0; +\infty[x \mapsto 2x^3 - 1]$ et $x \mapsto 2 \ln x$ donc donc g est croissante sur]0; + ∞ [

2) Sur $]0; +\infty[$, la fonction g est continue (car somme de deux fonctions continues), monotone (croissante) et $0 \in g(0) + \infty[$ = \mathbb{R} , donc, d'après le théorème des valeurs intermédiaires, il existe un unique $\alpha \in]0; +\infty[$ tel que $g(\alpha) = 0$

On trouve: $0.86 < \alpha < 0.87$

- 3) D'après la croissance de la fonction g, on a :
 - Si $x < \alpha$, g(x) < 0

• Si $x > \alpha$, g(x) > 0

Partie B

1) Limite en 0

$$\begin{vmatrix}
\lim_{\substack{x \to 0 \\ x > 0}} - \ln x = +\infty \\
\lim_{\substack{x \to 0 \\ x > 0}}
\end{vmatrix}$$
Par quotient
$$\lim_{\substack{x \to 0 \\ x > 0}} -\frac{\ln x}{x^2} = +\infty$$
or
$$\lim_{\substack{x \to 0 \\ x > 0}} 2x = 0 \text{ par somme } \lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty$$

Limite en $+\infty$, on change la forme de f(x): $f(x) = 2x - \frac{1}{x} \times \frac{\ln x}{x}$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{1}{x} = 0$$

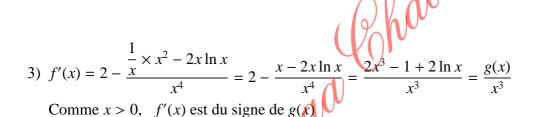
$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{\ln x}{x} = 0$$
Par produit
$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{1}{x} \times \frac{\ln x}{x} = 0$$
, or $\lim_{\substack{x \to +\infty \\ x \to +\infty}} 2x = +\infty$ par somme $\lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x) = +\infty$

2) La distance d de \mathscr{C} à Δ est donné par : $d = |f(x) - 2x| = \left| \frac{\ln x}{x^2} \right|$

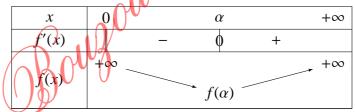
or d'après la question 1), on a : $\lim_{x\to +\infty} \frac{\ln x}{x^2} = 0$, donc la distance de \mathscr{C} à Δ tend vers 0 en $+\infty$.

La position relative en \mathscr{C} et Δ est donnée par le signe de $f(x) - 2x = -\frac{\ln x}{x^2}$, donc par le signe de $-\ln x$.

- Si 0 < x < 1, $-\ln x > 0$ donc \mathscr{C} est au dessus de Δ .
- Si x > 1, $-\ln x < 0$ donc \mathscr{C} est en dessous de Δ .



- 4) On obitent le tableau de variation suivant :



5) Voir la courbe en annexe 1

EXERCICE III

Déterminer une fonction

- 1) On a: f(1) = 3 et f'(1) = 0 (tangente horizontale)
- 2) On dérive la fonction *f* :

$$f'(x) = \frac{\frac{b}{x} \times x - (a + b \ln x)}{x^2} = \frac{b - a - b \ln x}{x^2} = \frac{(b - a) - b \ln x}{x^2}$$

3) D'après la forme de la fonction f et de la dérivée f', on a :

$$f(1) = a$$
 et $f'(1) = b - a$ donc $a = 3$ et $b - a = 0$ d'où $b = 3$

La fonction
$$f$$
 est donc : $f(x) = \frac{3 + 3 \ln x}{x}$

Exercice IV

Suite et fonction logarithme

1) a) Limites de la fonction f en 1 et en $+\infty$

$$\lim_{\substack{x \to 1 \\ x > 1}} x = 1$$

$$\lim_{\substack{x \to 1 \\ x > 1}} \ln x = 0^{+}$$
Par quotient
$$\lim_{\substack{x \to 1 \\ x > 1}} f(x) = +\infty$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0^{+}$$
Par quotient
$$\lim_{x \to +\infty} f(x) = +\infty$$

b) On calcule la dérivée :

$$f'(x) = \frac{\ln x - x \times \frac{1}{x}}{\ln^2 x} = \frac{\ln x - 1}{\ln^2 x}$$

- $f'(x) = 0 \Leftrightarrow \ln x = 1$
- Le signe de f'(x) est le signe de $\ln x 1$ car $\forall x > 1$, $\ln^2 x > 0$

Comme la fonction ln est croissante sur $]1; +\infty[$, on a :

X	1		e		+∞
f'(x)		_	Ф	+	L L
f(x)	+∞		e	doll	+∞

2) a) Voir annexe 2

On peut conjecturer que la suite (u_n) est décroissante et qu'elle converge vers l'abscisse du point d'intersetion de la courbe \mathcal{E} avec la droite d'équation y = 0.

b) Soit la proposition $P_n: \forall n \in \mathbb{N}, u_n \geqslant e$ • : pour n = 0, on a $u_0 = 9 \geqslant e$. P_0 est vraie.

On admet que $a_n \geqslant e$ montrons que $u_{n+1} \geqslant e$

On sait donc que $u_n \ge e$, comme la fonction f est croissante si $x \ge e$ (question 1b), on a alors $f(u_n) \ge f(e)$ donc que $u_{n+1} \ge e$

 P_n est donc Vraie qq soit l'entier naturel n

c) On a:

$$u_{n+1} - u_n = \frac{u_n}{\ln u_n} - u_n = \frac{u_n(1 - \ln u_n)}{\ln u_n}$$

On sait que pour tout naturel n, on a $u_n \ge e$ donc $\ln u_n \ge 1$ donc $\frac{u_n}{\ln u_n} > 0$ et $1 - \ln u_n \le 0$. On a alors $\forall n \in \mathbb{N}$, $u_{n+1} - u_n \le 0$, la suite (u_n) est décroissante.

La suite (u_n) est décroissante et minorée par e, elle est donc convergente vers une limite $\ell \geqslant e$

3) « Soit une suite (u_n) définie par u_0 et $u_{n+1} = f(u_n)$ conver-gente vers ℓ . Si la fonction associée f est continue en ℓ , alors la limite de la suite ℓ est solution de l'équation f(x) = x. »

On résout alors : $x = \frac{x}{\ln x}$ \iff $x \ln x = x$ \iff $x(\ln x - 1) = 0$

Cette équation a deux solutions : x = 0 et $\ln x = 1$ \Leftrightarrow x = e

Comme $\ell \ge e$ on en déduit que la suite (u_n) converge vers e.

Annexes

Annexe 1

