SERIE D'EXERCICES

3^{ème}sc-exp

EXERCICEN°1 Soit $A(x) = \frac{\cos 2x}{\sin x} - \frac{\sin 2x}{\cos x}$ avec $x \in]0, \frac{\pi}{2}[$.

1) Montrer que A(x)=
$$\frac{2\cos 3x}{\sin 2x}$$
.

- 2) Résoudre dans]- π , π [l'équation sin2x=0.
- 3) résoudre dans $]0, \frac{\pi}{2}$ [l'équation A(x)=2.
- 4)On pose sinx = t , montrer que l'équation A(x)=2 est équivalente à $4t^2+2t-1=0$,t \in]01[En déduire la valeur de $sin\frac{\pi}{10}$

EXERCICEN°2 Le plan est rapporté à un repère orthonormée direct (o, \vec{t}, \vec{j}) . Dans ce repère, on considère les points A(-5,0); B($-\sqrt{12}$,-2) et E(3,-4).

- 1) Déterminer les coordonnées cartésiennes du point c dont ses coordonnées polaires sont $[\sqrt{18}$, $3\frac{\pi}{4}]$
- 2) Déterminer les coordonnées polaires de A et B.
- 3) Soit [r, θ] les coordonnées polaires de E, calculer r, cos θ et sin θ .
- 4)Soit E' le point tel que OE=OE' et (\overrightarrow{OE} , $\overrightarrow{OE'}$) $\equiv \frac{\pi}{3}$ [2π]
- a) Construire le point E'
- b) Déterminer les coordonnées polaires de E' en fonction de θ
- c) Déterminer les coordonnées cartésiennes de E'.

EXERCICEN°3 Soit la fonction définie par f(x)= $\sqrt{x^2+4x+3}$.On désigne par C sa courbe représentative dans un repère (o , \vec{t} , \vec{j})

- 1) Déterminer l'ensemble de définition de f.
- 2) Calculer $\lim_{x\to -3^-} f(x)$ et $\lim_{-1^+} f(x)$ et interpréter graphiquement ces résultats.
- 3) a) Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$

b)En écrivant f(x) sous la forme $\sqrt{(x+2)^2-1}$ Calculer $\lim_{x\to+\infty}f(x)-(x+2)$ et $\lim_{x\to-\infty}f(x)+(x+2)$

En déduire le comportement asymptotique de C au voisinage de $-\infty$ et $de+\infty$.