Prof :Khammour.Khalil	Série d'exercices :	4 ^{ème} Info
Année Scolaire :2013/2014	<u>Matrices</u>	Tél :27509639

Exercice n°1:

Calculer AB et BA si c'est possible dans les cas suivants :

1)
$$A = \begin{pmatrix} 1 & 2 \\ 6 & 3 \\ -1 & 5 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix}$.

2)
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 4 & 1 & 2 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & 2 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$.

3)
$$A = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
 et $B = (4 -3 1)$.

4)
$$A = \begin{pmatrix} 1 & -1 & -1 \\ 3 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 5 & 1 & 4 \\ 1 & 2 & -1 \\ -1 & 1 & 1 \end{pmatrix}$

Exercice $n^{\circ}2$:

Soit
$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$
 et $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ la matrice unité d'ordre 3

- 1) Calculer A².
- 2) Montrer que $A^2 = A + 2 I_3$.
- 3) a) Déterminer une matrice B tel que $AB = I_3$.
 - b) En déduire que A est inversible et déterminer A^{-1} .

Exercice n°3:

Soit
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

- 1) Calculer le déterminant de A.
- 2) A est-elle inversible?

Exercice n°4:

Soit B =
$$\begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 et $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ la matrice unité d'ordre 3.

- 1) Calculer B² et B³.
- 2) Montrer que $B^3 3B^2 2B I_3 = O$ où O est la matrice nulle d'ordre 3.
- 3) En déduire que B est inversible et déterminer B^{-1} .

Exercice n°5:

Soit A =
$$\begin{pmatrix} 3 & 2 & -3 \\ 4 & 10 & -12 \\ 3 & 6 & -7 \end{pmatrix}$$

- 1) a) Calculer le déterminant de A.
 - b) Montrer que A est inversible.

c) Vérifier que
$$A^{-1} = \frac{1}{8} \begin{pmatrix} 2 & -4 & 6 \\ -8 & -12 & 24 \\ -6 & -12 & 22 \end{pmatrix}$$

2) Résoudre dans IR³ le système suivant : (S)
$$\begin{cases} 3x + 2y - 3z = 1 \\ 4x + 10y - 12z = 4 \\ 3x + 6y - 7z = 2 \end{cases}$$

Exercice n°6:

Soit M =
$$\begin{pmatrix} 2 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$
 et $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ la matrice unité d'ordre 3.

- 1) a) Calculer M².
 - b) Vérifier que $M^3 = O$ où O est la matrice nulle d'ordre 3.
- 2) a) Vérifier que $(I_3 M)(I_3 + M + M^2)$.

b) En déduire que
$$I_3$$
 – M est inversible et que $(I_3 - M)^{-1} = \begin{pmatrix} 4 & 2 & 1 \\ -5 & -2 & -1 \\ 2 & 1 & 1 \end{pmatrix}$

- 3) On considère le système suivant : (S) $\begin{cases}
 -x y = 1 \\
 3x + 2y z = -1 \\
 -x + 2z = 1
 \end{cases}$
 - a) Déterminer la matrice A de (S).
 - b) Vérifier que $A=I_3 M$.
 - c) Ecrire (S) sous forme d'une écriture matricielle.

d) Résoudre dans IR³ le système (S).

Exercice n°7:

On considère le système suivant : (S)
$$\begin{cases} 5x + 7y + 9z = 235 \\ x + 2y + 3z = 65 \\ 2x + 2y + 3z = 80 \end{cases}$$

- 1) Déterminer la matrice A de (S).
- 2) Montrer que A est inversible et que sa matrice inverse est :

$$A^{-1} = \frac{1}{8} \begin{pmatrix} 0 & -1 & 1\\ 1 & -1 & -2\\ -\frac{2}{3} & \frac{4}{3} & 1 \end{pmatrix}$$

3) Résoudre dans IR³ le système (S).

Exercice n°8:

1) a) Calculer le déterminant de chacune de des matrices suivantes :

$$A = \begin{pmatrix} 2 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \quad ; \quad B = \begin{pmatrix} -5 & -1 & 3 \\ 3 & 2 & 7 \\ 1 & 2 & -1 \end{pmatrix} \quad ; \quad C = \begin{pmatrix} 1 & 1 & -1 \\ 4 & 1 & 1 \\ 1 & -3 & -1 \end{pmatrix}$$

- b) Calculer les produits matricielles suivantes : AB ; AC ; BA ; BC .
- 2) On considère la matrice $A \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix}$ et $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ la matrice unité d'ordre 3.
- a) Calculer $A^2 3A + 2I_3$. En déduire la matrice B tel que $AB=I_3$
- b) En déduire que A est inversible et déterminer sa matrice inverse.