Direction Régionale de L'enseignement Secondaire

BEN AROUS

Lycée N elle Médina III

DEVOIR DE CONTROLE N°3

Sciences Physiques

Classe: 4^{ème} M₂ Durée: 2 Heures

Prof: Ouni Hassen

Date: 11 - 04 - 2013

CHIMIE

Exercice N°1 (4 points):

On prépare 3 solutions aqueuses (S_1) , (S_2) et (S_3) de concentrations molaires respectives C_1 , C_2 et C_3 en dissolvant respectivement les trois acides notés A_1H , A_2H et A_3H . La mesure du pH de chaque solution donne respectivement $pH_1 = 3,4$, $pH_2 = 3,4$ et $pH_3 = 2$.

On dose séparément le même volume V_A = 10 mL de chacune des trois solutions acides avec la même solution de soude (Na⁺ + OH⁻); base forte; de concentration C_B . Les volumes de la solution de soude versés à l'équivalence sont égaux respectivement à $V_{BE1} = 4 \text{ mL}$, $V_{BE2} = 10 \text{ mL}$ et $V_{BE3} = 4 \text{ mL}.$

- 1°) a Montrer que les solutions (S_1) et (S_3) ont la même concentration molaire.
 - **b** Comparer et avec justification la force des deux acides A_1H et A_3H .
- 2°) a Etablir une relation entre C_1 et C_2 .
 - b Comparer et avec justification la force des deux acides A_1H et A_2H . En déduire une classification par ordre de force croissante des acides A_1H , A_2H et A_3H .
- 3°) On dilue au 1/10 chacune des trois solutions précédentes et on prépare trois nouvelles solutions de pH respectifs : $pH'_1 = 3.9$, $pH'_2 = 3.9$ et $pH'_3 = 3$.
 - a Montrer que l'acide le plus fort est un acide fort.
 - ${f b}$ En déduire la concentration initiale de l'acide fort et la valeur de la concentration ${m C}_{B}$ de la solution de soude.
 - c Déterminer les concentrations initiales des deux autres solutions acides avant la dilution.

Exercice N°2 (3 points)

On réalise ; à la température de 25 °C ; la pile électrochimique (P) symbolisée par :

$$Pb \ \big| \ Pb^{2+}(0,\!1 \ mol.L^{\text{-}1}) \ \big\| \ Sn^{2+} \ (1,\!0 \ mol.L^{\text{-}1}) \ \big| \ Sn$$

- 1°) a Schématiser la pile (P) avec toutes les indications utiles.
 - **b** Ecrire l'équation chimique associée à la pile (P).
- 2°) La mesure de la force électromotrice de la pile (P) à circuit ouvert donne la valeur E = 0.02 V
 - a Préciser ; en justifiant la réponse ; la polarité de la pile.
 - b Ecrire l'équation de la réaction spontanée qui se produit quand la pile débite un courant électrique dans le circuit extérieur.
- 3°) a Exprimer puis calculer la f.é.m. standard E^0 de la pile (P).
 - b Déduire la constante d'équilibre K relative à l'équation chimique associée à la pile (P).
 - c Comparer la force des réducteurs mis en jeu.

PHYSIQUE

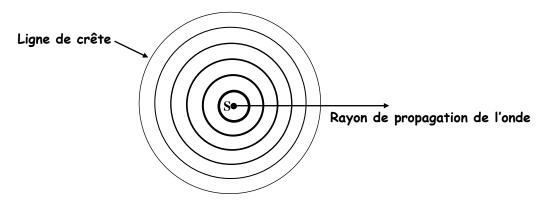
Exercice N°1 (7 points)

L'extrémité S d'une longue corde SA horizontale et tendue, est animée d'un mouvement rectiligne sinusoïdal d'amplitude $a = 2.10^{-3}$ m et de fréquence N = 50 Hz.

Le mouvement de S débute à l'instant t = 0s en déplaçant dans le sens négatif.

L'onde se propage le long de la corde sans amortissement, sans réflexion et avec une célérité constante $v = 10 \text{ m.s}^{-1}$.

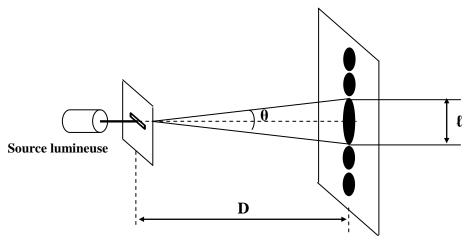
1°) Etablir l'équation horaire du mouvement de la source S.


- 2°) a Préciser la nature de l'onde créée et montrer qu'il s'agit d'une onde progressive.
 - **b** Définir puis calculer la longueur d'onde λ .
- 3°) Soit M un point de la corde situé à une distance x = 45 cm de S.
 - a Exprimer; en fonction de x, N et λ ; le retard t_0 mis par l'onde issue de S pour atteindre le point M.
 - **b** Etablir l'équation horaire du mouvement du point M.
- 4°) a Représenter ; sur un même système d'axes et sur la figure -1- de la page (4) ; les diagrammes des mouvements de S et M.
 - **b** Comparer l'état vibratoire de M par rapport à S.
- 5°) a Représenter sur la figure-2- de la page (4), l'aspect de la corde à l'instant $t_1 = 5.5.10^{-2}$ s.
 - ${f b}$ Déterminer le nombre et les positions des points ${f P}_i$ de la corde qui vibrent en quadrature avance de phase par rapport à S à l'instant t_1 .
- 6°) Représenter sur la figure-2- de la page (4) les points qui vibrent ; à l'instant t1; avec une élongation y = -a/2 et qui se déplacent dans le sens négatif.

Exercice N°2 (6 points)

Les deux parties sont indépendantes

 ${f I}$ - Un vibreur muni d'une pointe produit; en un point ${f S}$ de la surface libre de l'eau contenue dans une cuve à ondes dont les bords évitent la réflexion des ondes ; une onde progressive de fréquence N réglable.


Pour observer l'immobilité apparente, on éclaire la surface libre de l'eau par une lumière stroboscopique de fréquence Ne convenable. La figure -3- représente l'aspect de la surface de l'eau à un instant t donné.

- Figure -3-
- 1°) Justifier pourquoi le phénomène observé est plus nette au voisinage de la source?
- 2°) Pour une fréquence $N_1 = 25$ Hz et selon un rayon de propagation de l'onde, la distance séparant six crêtes consécutifs est $d_1 = 40$ mm.
 - **a** Déterminer la longueur d'onde λ_1 de l'onde créée.
 - **b** Déduire la célérité v_1 de l'onde.
- 3°) Si on règle la fréquence à la valeur $N_2 = 40 \, Hz$, une mesure de la nouvelle longueur d'onde donne la valeur $\lambda_2 = 5.5$ mm.
 - a Calculer la nouvelle célérité v₂ de l'onde.
 - b Que peut-on conclure du milieu de propagation de l'onde?
- 4°) A une distance de la source 5, on place un obstacle muni d'une ouverture de largeur a comparable à la longueur d'onde. Schématiser sur la figue-4- de la page (4) la forme de l'onde au delà de la fente en précisant le phénomène qui se produit.
- 5°) Déterminer la valeur maximale de Ne de la fréquence du stroboscope permettant d'observer à la fois l'immobilité apparente avec les deux fréquences N_1 et N_2 .

II- On éclaire une fente fine de largeur $a=0,2\ mm$ par un faisceau de lumière monochromatique de longueur d'onde λ . La figure-5- reproduit ce qui est obtenu sur un écran placé perpendiculairement au faisceau et à une distance $D=3\ m$ du plan de la fente.

- Figure-5-
- 1°) Quel est le caractère de la lumière mis en évidence par le phénomène observé?
- 2°) La demi-largeur angulaire θ est faible pour laquelle on prendra $tg(\theta) = \theta$.
 - **a** Etablir une relation entre l'écart angulaire θ , la largeur ℓ de la tache centrale et la distance D séparant l'écran au plan contenant la fente.
 - **b** Sachant que $\theta = \lambda/a$, déduire l'expression de λ en fonction de ℓ , a et D.
- 3°) Identifier la couleur de la lumière utilisée. On prendra $\ell=1,8~cm$.

On donne les longueurs d'onde de certaines radiations visibles en nm. $(1nm = 10^{-9} m)$.

	Violet	Indigo	Bleu	Vert	Jaune	Orangé	Rouge
400	430	450	500	570	590	610	750

Feuille à rendre avec la copie

Figure -1-

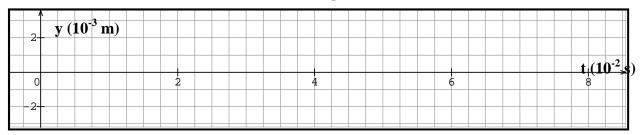


Figure -2-

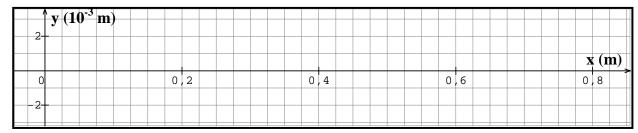
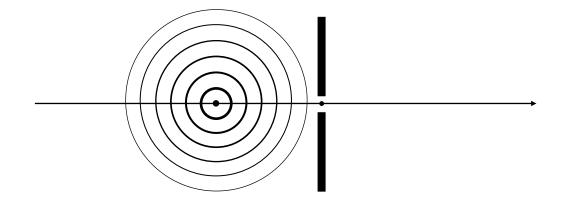



Figure -4-

Feuille à rendre avec la copie

Figure -1-

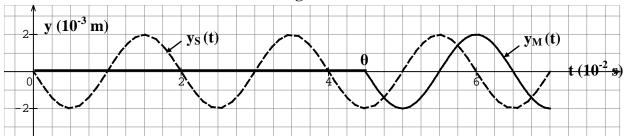


Figure -2-

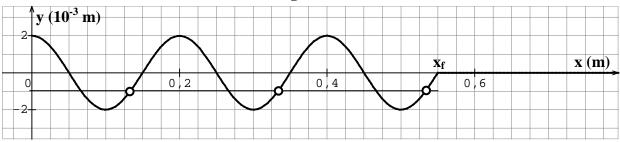
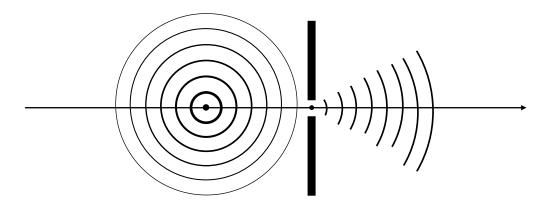



Figure -4-

