L.S. Dar-el-amen	-	Devoir de contrôle n° 3	-	4 ^{ème} math1
		Mathématiques		
Mr : Abidi A.		Durée 2h -		Mai 2011

Exercice n° : 1 (4 points)

Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.

Une seule réponse par question est acceptée et aucune justification n'est demandée.

Partie: I

Le tableau ci-dessous donne l'évolution du SMIC horaire brut en euros de 2000 à 2006.

Année	2000	2001	2002	2003	2004	2005	2006
Rang de l'année x_i	0	1	2	3	4	5	6
SMIC horaire en euros y_i	6,41	6,67	6,83	7,19	7,61	8,03	8,27

(Source : INSEE)

1) Les coordonnées du point moyen G de la série $(x_i; y_i)$ sont :

- a) (3;7,28);
- b) (4;7,28);
- c) (3;7,01);
- d) (2,15;11,05).
- 2) Une équation de la droite de régression D de y en x, obtenue par la méthode des moindres carrés est :
- a) y = 0.16x 2.7; b) y = 2.1x + 3.12; c) y = 7x + 12.5;

- d) y = 0.32x + 6.31.

Partie: II

3) Soit f la fonction définie et dérivable sur l'intervalle $[0;+\infty[$ par f $(x)=3\ln x-2x+5.$

Dans le plan muni d'un repère, la tangente à la courbe représentative de la fonction f en son point d'abscisse 1 admet pour équation :

- a) y = x + 2;
- b) y = -x + 4;
- c) y = 3x + 1;
- 4) La valeur moyenne de la fonction $f(x) = \frac{e^x}{1 + e^x}$ sur l'intervalle : [-1;1] est égale à :

a)
$$\bar{f} = \frac{e-1}{2}$$
; b) $\bar{f} = \frac{1}{2}$;

b)
$$\bar{f} = \frac{1}{2}$$
;

c)
$$\bar{f} = \frac{2e - e^{-1}}{2}$$
; d) $\bar{f} = \frac{3}{2}$.

$$\bar{f} = \frac{3}{2}$$

Exercice n°: 2 (5 points)

Soit A l'ensemble des entiers naturels de l'intervalle [1; 46].

1. On considère l'équation :

(E):
$$23x + 47y = 1$$

où x et y sont des entiers relatifs.

- **a.** Donner une solution particulière (x_0, y_0) de (E).
- **b.** Déterminer l'ensemble des couples (x, y) solutions de (E).
- **c.** En déduire qu'il existe un unique entier x appartenant à A tel que $23x \equiv 1$ (47).
- **2.** Soient a et b deux entiers relatifs.
- **a.** Montrer que si ab $\equiv 0$ (47) alors a $\equiv 0$ (47) ou b $\equiv 0$ (47).
- **b.** En déduire que si $a^2 \equiv 1$ (47) alors $a \equiv 1$ (47) ou $a \equiv -1$ (47).
- **3. a.** Montrer que pour tout entier p de A, il existe un entier relatif q tel que p \times q \equiv 1 (47). Pour la suite, on admet que pour tout entier p de A, il existe un unique entier, noté inv(p), appartenant à A tel que:

$$p \times inv(p) \equiv 1 (47)$$
.

- **b.** Quels sont les entiers p de A qui vérifient p = inv(p)?
- **c.** Montrer que $46! \equiv -1 (47)$.

Mr : ABIDI ALI	Devoir de	Page 1/3	4 ^{ème} math - 2010-2011	Lycée secondaire dar-el-amen
	contrôle n° 3			

Exercice n°: 3 (4 points)

1. Soit f la fonction définie sur [1; $+\infty$ [par $f(x) = \frac{x}{e^x - 1}$ et soit H la fonction définie sur [1; $+\infty$ [

par :
$$H(x) = \int_{1}^{x} f(t)dt$$
.

- **a.** Justifier que f et H sont bien définies sur $[1; +\infty[$
- **b.** Quelle relation existe-t-il entre H et f?
- **c.** Soit C la courbe représentative de f dans un repère orthonormé $(O; \vec{i}; \vec{j})$ du plan. Interpréter en termes d'aire le nombre H(3).
- 2. On se propose, dans cette question, de donner un encadrement du nombre H(3).
- **a.** Montrer que pour tout réel x > 0, $\frac{x}{e^x 1} = x \times \frac{e^{-x}}{1 e^{-x}}$.
- **b.** En déduire que $\int_{1}^{3} f(x) dx = 3 \ln \left(1 \frac{1}{e^{3}} \right) \ln \left(1 \frac{1}{e} \right) \int_{1}^{3} \ln \left(1 e^{-x} \right) dx$.
- **c.** Montrer que si $1 \le x \le 3$, alors $\ln\left(1 \frac{1}{e}\right) \le \ln(1 e^{-x}) \le \ln\left(1 \frac{1}{e^3}\right)$
- **d.** En déduire un encadrement de $\int_1^3 \ln(1-e^{-x}) dx$ puis de $\int_1^3 f(x) dx$.

Exercice n° : 4 (7 points)

À tout entier naturel n non nul, on associe la fonction f_n définie sur R par $f_n(x) = \frac{4e^{nx}}{e^{nx} + 7}$.

On désigne par C_n la courbe représentative de la fonction f_n dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

Les courbes C₁, C₂ et C₃ sont données en annexe ci-jointe.

Partie A : Étude de la fonction f_1 définie sur R par $f_1(x) = \frac{4e^x}{e^x + 7}$.

- **1.** Vérifier que pour tout réel x, $f_1(x) = \frac{4}{1+7e^{-x}}$.
- 2. a. Démontrer que la courbe C₁ admet deux asymptotes dont on précisera des équations.
- $\boldsymbol{b.}$ Démontrer que la fonction f_1 est strictement croissante sur R.
- c. Démontrer que pour tout réel x, $0 < f_1(x) < 4$.
- 3. a. Démontrer que le point I₁ de coordonnées (ln7, 2) est un centre de symétrie de la courbe C₁.
- **b.** Déterminer une équation de la tangente (T_1) à la courbe C_1 au point I_1 .
- **c.** Tracer la droite (T_1) .
- **4. a.** Déterminer une primitive de la fonction f_1 sur R.
- **b.** Calculer la valeur moyenne de f_1 sur l'intervalle [0; ln7].

Mr : ABIDI ALI	Devoir de	Page 2/3	4 ^{ème} math - 2010-2011	Lycée secondaire dar-el-amen
	contrôle n° 3			

Partie B: Étude de certaines propriétés de la fonction f_n.

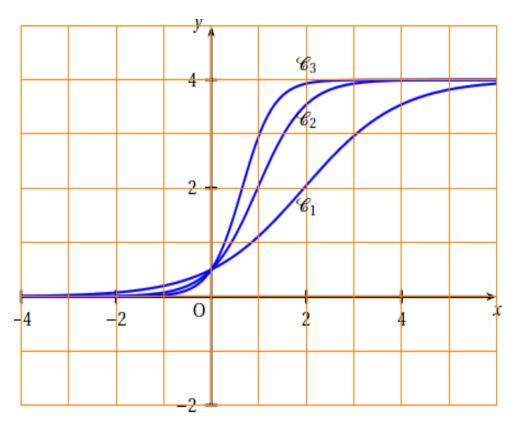
- 1. Démontrer que pour tout entier naturel n non nul le point $A(0, \frac{1}{2})$ appartient à la courbe C_n .
- **2.a.** Démontrer que pour tout entier naturel n non nul la courbe C_n et la droite d'équation y = 2 ont un unique point d'intersection dont on précisera l'abscisse.

On note I_n ce point d'intersection.

- **b.** Déterminer une équation de la tangente (T_n) à la courbe C_n au point I_n .
- **c.** Tracer les droites (T_2) et (T_3) .
- **3.** Soit la suite (u_n) définie pour tout entier naturel n non nul par : $u_n = \frac{n}{\ln 7} \int_0^{\ln 7} f_n(x) dx$.

Montrer que la suite (u_n) est constante.

Annexe (Exercice n° 4)



Mr : ABIDI ALI	Devoir de	Page 3/3	4 ^{ème} math - 2010-2011	Lycée secondaire dar-el-amen
	contrôle n° 3			