Pr: Briki Chaker

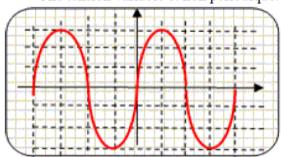
E-mail: chaker briki@yahoo.fr

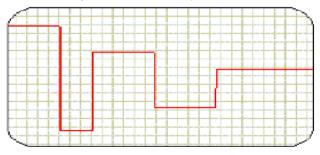
Série nº 11

(Transformateur – Redressement – Solide en équilibre soumis à 3 forces)

Exercice n° 1:

Répondre par vrai ou faux et justifier.


- Une tension alternative peut être positive, négative ou nulle.
- Un oscilloscope mesure des tensions efficaces ; un voltmètre numérique mesure des tensions maximales.
- La relation liant valeur maximale et valeur efficace est : $U_{max} = \sqrt{2} . U_{eff}$.
- L'unité de la tension est le volt, celle de la période la seconde, celle de la fréquence le hertz.


La tension représentée est :

- Une tension variable sinusoïdale.
- Une tension continue.
- Une tension alternative périodique.
- Une tension variable et non périodique.

Sensibilité verticale : 2 V/div. Sensibilité horizontale 10 ms /div.

- La valeur maximale de la tension est $U_{max} = 6 \text{ V}$.
- La période vaut T = 20 ms.
- La fréquence vaut N = 0,05 Hz.

Exercice n° 2:

Un circuit électrique comprend en série : un générateur de tension, un résistor de résistance R et un oscilloscope branché aux bornes du résistor.

L'oscilloscope est réglé comme suit :

Sensibilité verticale : 5 V/div.

Sensibilité horizontale : 10 ms/div.

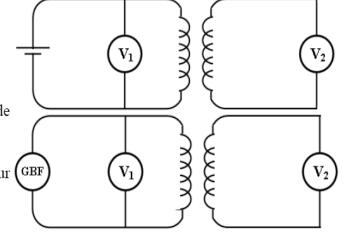
- 1) La visualisation à l'oscilloscope de la tension aux bornes du résistor fournie la courbe ci-contre :
 - a. Quelle est la nature de la tension observée ?
 - b. Déterminer la période de cette tension.
 - c. Déduire la fréquence de cette tension.
 - d. Déterminer la valeur maximale de la tension.
- 2) On branche un voltmètre aux bornes du résistor. Qu'appelle-t-on la tension mesurée par le voltmètre ? Donner sa valeur.

Exercice no 3:

Dans tout l'exercice la tension aux bornes du primaire est U_1 , la tension aux bornes du secondaire est U_2 et le rapport de transformation est \mathbf{n} .

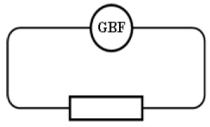
1) On réalise le montage ci-contre : n = 0.5 et $U_2 = 36$ V.

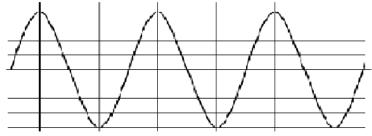
Quelle est la valeur de la tension U_1 ?

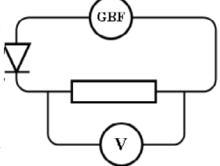

2) On réalise le montage ci-contre :

a. Si $U_1 = 12$ V et n = 3. Quelle est la valeur de la tension U_2 ?

• Qu'appelle-t-on ce transformateur ?


b. Si $U_1 = 8$ V et $U_2 = 4.8$ V. Quelle est la valeur du rapport de transformation \mathbf{n} ?


• Qu'appelle-t-on ce transformateur ?


Exercice n° 4:

1) La tension mesurée aux bornes d'un résistor et observée à l'oscilloscope donne la courbe ci-dessous.

- a. Quelle est la nature de la tension observée ?
- b. Le courant circule dans le résistor dans un seul sens ou bien de part et d'autre ?
- c. Etant donné que la sensibilité horizontale de l'oscilloscope est 20 ms/div et sa sensibilité verticale est 5 V/div, déterminer la période T, la fréquence N de cette tension et la tension maximale U_{max}.
- 2) On donne la représentation du montage ci-contre.
- **a.** Le courant circule-t-il dans le résistor dans un seul sens ou de part et d'autre ? Justifier.
- b. Représenter la forme de la tension, aux bornes du résistor, observée à l'écran de l'oscilloscope sachant que le voltmètre indique 8,48 V.
- c. La tension aux bornes du résistor est-elle alternative ? Justifier.
- d. Quelle est la période T' et la fréquence N' de la tension aux bornes du résistor ?

Exercice n° 5:

On considère deux plans (P_1) et (P_2) inclinés d'un même angle $\alpha = 30^\circ$ par rapport à l'horizontale.

- (S) est un solide de masse m.
- (R) est un ressort de masse négligeable, de longueur à vide $l_0 = 20$ cm et de constante de raideur $k = 100 \text{ N.m}^{-1}$.
- I. Le solide (S) est placé sur le plan (P_1) . Le contact est supposé sans frottement. (Figure 1)
 - A l'équilibre le ressort s'allonge de $\Delta l = 2$ cm.
- 1) Faire le bilan des forces extérieures qui s'exercent sur le solide (S) et les représenter.
- 2) Calculer la valeur de la tension T_1 du ressort.
- 3) Ecrire la condition d'équilibre du solide (S).
- 4) Déterminer à l'équilibre :
 - a. La valeur de la masse m du solide (S).
 - b. La valeur de la réaction R du plan incliné (P₁).

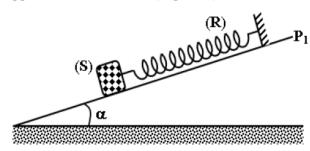
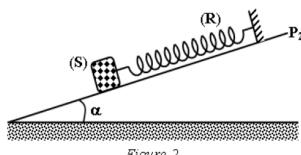
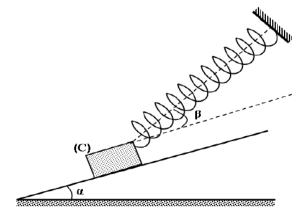


Figure 1

- II. Le solide (S) est placé maintenant sur le plan (P₂). (Figure 2)
 - A l'équilibre la longueur du ressort est $l_2 = 21,5$ cm.
 - 1) Calculer la nouvelle valeur de la tension T_2 du ressort.
 - 2) En déduire que le contact entre (S) et le plan incliné (P_2) se fait avec frottement.
 - 3) Déterminer la valeur de la force de frottement f. On donne $\|\overrightarrow{g}\| = 10 \text{ N.kg}^{-1}$.




Figure 2

Exercice nº 6 :

Un corps (C) de poids $\|\overrightarrow{P}\| = 20$ N repose sans frottement sur un plan incliné faisant un angle $\alpha = 30^{\circ}$

par rapport à l'horizontale. Il est maintenu fixe à l'aide d'un ressort de masse négligeable, de raideur $k = 500 \text{ N.m}^{-1}$, de longueur initiale $L_0 = 20 \text{ cm}$ et faisant un angle $\beta = 15^{\circ}$ par rapport au plan incliné.

- Représenter les forces exercées sur le corps (C).
- Ecrire la condition d'équilibre du corps (C).
- 3) Déterminer la valeur de la tension $\|\overrightarrow{T}\|$ du ressort.
- 4) Déduire sa longueur L.
- 5) En réalité les frottements ne sont pas négligeables et sont équivalentes à une force f parallèle au plan incliné et dirigée vers le haut. La valeur de la tension du ressort est dans ce cas $\|\overrightarrow{\mathbf{T'}}\| = 8,4 \text{ N}.$

Ecrire la nouvelle condition d'équilibre du corps (C) et déduire la valeur de la force de frottement $\|\mathbf{f}\|$.

