Ministère de l'Education
Direction Régionale de Tunis
Lycée Pilote Bourguiba Tunis

Devoir de contrôle N°2

Sciences Physiques

Date: 22 / 01 / 2014

Durée: 1 H

Professeur : Mme Ben Rabeh

Classe : 1s8

Nom : l	Prénom :	N°:	Note:/20

CHIMIE (8 points):

EXERCICE N°1 (4 points):

Compléter les phrases suivantes :

- 1) Dans un bécher contenant de l'eau à 25°C, on dissout une masse *m* d'hydroxyde de sodium. Il se dégage de la chaleur.
- L'hydroxyde de sodium est le
- L'eau est le
- La solution est
- La dissolution est
- 2) Après agitation, il reste un résidu solide au fond du bécher.
- La solution est à 25°C.
- La concentration est et appelée et appelée
- La masse dissoute est à la masse *m* introduite.

EXERCICE N°2 (4 points):

On donne: $M(H) = 1 \text{ g.mol}^{-1} M(CL) = 35.5 \text{ g.mol}^{-1} N_A = 6.02 \cdot 10^{23} V_m = 24 \text{ L.mol}^{-1}$.

On dissout un volume v de chlorure d'hydrogène gazeux dans 500mL d'eau pour préparer une solution aqueuse de chlorure d'hydrogène de concentration c = 0.4 mol.L⁻¹

1)	Déterminer la quantité de matière dissoute.
2)	Déduire le volume <i>v</i> gazeux.
3)	Calculer la masse m de chlorure d'hydrogène dissoute.
4)	Déduire la concentration massique.
5)	Calculer le nombre de molécules de chlorure d'hydrogène contenues dans la masse m.

6)		e la masse d'une molecule de chlorure d'hydrogene.
7)	On ajo	ute 80mL d'eau à la solution précédente. Donner une relation entre c et c' concentrations respectives avant et après la dilution.
	b)	Déduire la concentration c'.
PHYSIC	QUE (12	<u>Points) :</u>
<u>EXERC</u>	ICE N°1	(6 points) :
Compl	éter les	phrases suivantes :
•	et son A la te A la te La dila la La fus	effet d'une élévation de la
<u>EXERC</u>	ICE N°2	(6 points) :
On réa	lise les	4 équilibres présentés aux figures de 1 à 4.
On do	nne m_1	= 200g, m_2 = 160g, m_3 = 168g, m_4 = 68g et ρ_{eau} = 1g.cm ⁻³ .
1)	Calcule	er la masse d'eau.
2)	Calcule	er la masse du liquide.
3)	Calcule	er la masse du solide.
4)	Calcule	er le volume d'eau.
5)	Déduir	re la masse volumique du solide $ ho_{solide}$ ainsi que celle du liquide $ ho_{liquide}$.

	n chauffe le solide, on constate une variation de son volume de $0.2~{ m cm}^3$. Calculer la masse volumique $ ho'_{solide}$ du solide chauffé.					
b)	Comparer $ ho_{solide}$ et $ ho'_{solide}$. Conclure.					
	2 T	Figure 1				
	V ₁ 2 160g T					
		Figure 2				
	V ₁ P P P P P P P P P					
	$V_2 = 2V_1$ eau $m_4 68g$ T	Figure 3				
		Figure 4				

6)

Ministère de l'Education Direction Régionale de Tunis Lycée Pilote Bourguiba Tunis

Devoir de contrôle N°2

Sciences Physiques

Date: 22 / 01 / 2014

Durée : 1 H

Professeur : Mme Ben Rabeh **Classe :** 1s8

Corrigé

CHIMIE (8 points):

EXERCICE N°1 (4 points):

Compléter les phrases suivantes :

- 1) Dans un bécher contenant de l'eau à 25°C, on dissout une masse m d'hydroxyde de sodium. Il se dégage de la chaleur.
- L'hydroxyde de sodium est le soluté.
- L'eau est le solvant.
- La solution est aqueuse.
- La dissolution est exothermique
- 2) Après agitation, il reste un résidu solide au fond du bécher.
- La solution est saturée à 25°C.
- La concentration est maximale et appelée solubilité.
- La masse dissoute est **inférieure** à la masse *m* introduite.

EXERCICE N°2 (4 points):

On donne: $M(H) = 1 \text{ g.mol}^{-1} M(CL) = 35.5 \text{ g.mol}^{-1} N_A = 6.02 \cdot 10^{23} V_m = 24 \text{ L.mol}^{-1}$.

On dissout un volume v de chlorure d'hydrogène gazeux dans 500mL d'eau pour préparer une solution aqueuse de chlorure d'hydrogène de concentration c = 0.4 mol.L⁻¹

1) Déterminer la quantité de matière dissoute.

$$n = c \times V = 0.4 \times 0.5 = 0.2 mol$$

2) Déduire le volume v gazeux.

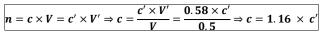
$$v = n \times V_m = 0.2 \times 24 = 4.8L$$

3) Calculer la masse m de chlorure d'hydrogène dissoute.

$$m = n \times M(HCl) = 0.2 \times (1 + 35.5) = 7.3g$$

4) Déduire la concentration massique.

$$C_m = \frac{m}{V} = \frac{7.3}{0.5} = 14.6 \ g.L^{-1} \ ou \ C_m = c \times M(HCl) = 0.4 \times 36.5 = 14.6 \ g.L^{-1}$$


5) Calculer le nombre de molécules de chlorure d'hydrogène contenues dans la masse m.

$$N(HCl) = n(HCl) \times N_A = 0.2 \times 6.02 \ 10^{23} = 1.204 \ 10^{23} \ molécules$$

6) Déduire la masse d'une molécule de chlorure d'hydrogène.

$$m_{mol \acute{e}cule(HCl)} = \frac{m}{N(HCl)} = \frac{7.3}{1.204 \cdot 10^{23}} = 6.063 \cdot 10^{-23} g$$

- 7) On ajoute 80mL d'eau à la solution précédente
 - a) Donner une relation entre c et c' conce

b) Déduire la concentration c'.

$$c' = \frac{c}{1.16} = \frac{0.4}{1.16} = 0.3448 \ mol. L^{-1}$$

PHYSIQUE (12 points):

EXERCICE N°1 (6 points):

Compléter les phrases suivantes :

- Sous l'effet d'une élévation de la **température**, la masse d'un solide **reste constante** et son volume **augmente**. On dit que le solide a subi une **dilatation**.
- A la température de fusion, la matière passe de l'état solide à l'état **liquide**.
- A la température de **sublimation**, la matière passe de l'état solide à l'état gazeux.
- La dilatation et la contraction d'un corps dépendent de sa **nature**, de la variation de la **température** et de son **volume**.
- La fusion et la **solidification** d'un corps pur sont deux **changements d'état** inverses qui se font à la **même température**.

EXERCICE N°2 (6 points):

On réalise les 4 équilibres présentés aux figures de 1 à 4. On donne : m_1 = 200g, m_2 = 160g, m_3 = 168g, m_4 = 68g et ρ_{equ} = 1g.cm⁻³.

1) Calculer la masse d'eau.

$$m_{equ} = m_1 - m_2 = 200 - 160 = 40g$$

2) Calculer la masse du liquide.

$$m_{liquide} = m_1 - m_3 = 200 - 168 = 32g$$

3) Calculer la masse du solide.

$$m_{solide} = m_2 - m_4 = 160 - 68 = 92g$$

4) Calculer le volume d'eau.

$$V_{eau} = V_1 = \frac{m_{eau}}{\rho_{eau}} = \frac{40}{1} = 40 cm^3$$

5) Déduire la masse volumique du solide ρ_{solide} ainsi que celle du liquide $\rho_{liquide}$.

$$\begin{split} V_2 &= 2 \times V_1 = V_{eau} + V_{solide} \Rightarrow V_{solide} = V_{eau} = V_1 = 40 cm^3 \ et \ V_{liquide} = V_{eau} = V_1 \\ \hline \rho_{solide} &= \frac{m_{solide}}{V_{solide}} = \frac{92}{40} = 2.3 \ g. \ cm^{-3} \\ \hline \rho_{liquide} &= \frac{m_{liquide}}{V_{liquide}} = \frac{32}{40} = 0.8 \ g. \ cm^{-3} \end{split}$$

- 6) On chauffe le solide, on constate une variation de son volume de 0.2 cm³.
 - a) Calculer la masse volumique ρ'_{solide} du solide chauffé.

le volume du solide augmente ainsi $V_{solide}' = V_{solide} + V_{aj} = 40.2 cm^3$

$$\rho'_{solide} = \frac{m_{solide}}{V'_{solide}} = \frac{92}{40.2} = 2.288 \ g. cm^{-3}$$

b) Comparer ho_{solide} et ho_{solide}' . Conclure.

un solide, sa masse volumique diminue.

