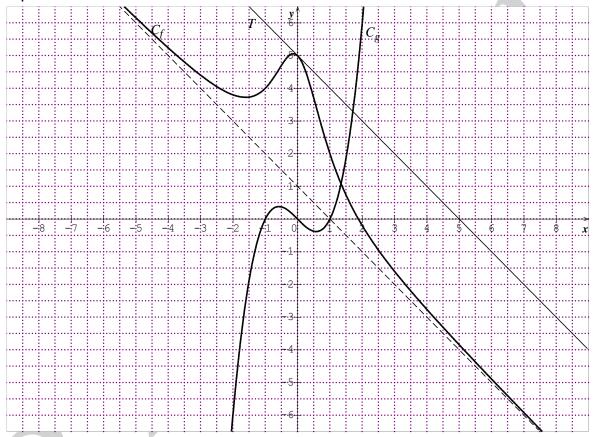
Lycée :ELAMEL Fouchana	Devoir de contrôle n°1	Prof : B.Zouhaier
Classe : 4émeSC1	Novembre 2013	Durée : 2 heures

Exercice N°1: (4 points) Répondre par vrai ou faux, en justifiant la réponse

- 1. Si z_1 et z_2 sont les solutions de l'équation : $z^2 + (1+i)z + 4\cos\theta = 0$ alors : $(z_1)^2 + (z_2)^2 = 2i 8\cos\theta$
- 2. Si θ est un réel donné alors Arg(-2i $e^{-i\theta}$) $\equiv \frac{3\pi}{2} \theta[2\pi]$
- 3. Soient f et g les deux fonctions définies sur $\mathbb R$ par leurs courbes représentatives suivantes :



- ullet \mathcal{C}_g admet deux branches infinies paraboliques de direction (yy')
- Δ : y=-x+1 est une asymptote à \mathcal{C}_f au voisinage de - ∞ et de + ∞
- f est dérivable en 0 et T est la tangente à C_f au point d'abscisse 0 a) $\lim_{x\to -\infty} \frac{g(x)}{x} = -\infty$
 - b)La courbe de fog admet une asymptote oblique au voisinage de $-\infty$

$$c)\lim_{x\to +\infty} gof(x) = +\infty$$

d) f'(0) = -1

Exercice N°2: (5 points)

1. Résoudre dans \mathbb{C} l'équation (E) : $2Z^2 - \sqrt{3} (\sqrt{3} + i)Z + 1 + \sqrt{3} i = 0$

- 2. (o, \vec{u}, \vec{v}) étant un repére orthonormé du plan A et B deux points d'affixes respectives $Z_A = \frac{1+i\sqrt{3}}{2}$ et $Z_B = iZ_A$ et I le milieu de [AB]
 - a)Donner la forme exponentielle de Z_A et Z_B
 - b)Placer les points A, B et I dans le repère (o, \vec{u}, \vec{v})
 - c)Montrer que le triangle OAB est isocèle et rectangle
 - d)En déduire la forme exponentielle de Z_I

Exercice N°3: (6 points)

Le plan est muni d'un repère orthonormé (O, \vec{u} , \vec{v}) et z un nombre complexe non nul M et M'd'affixes respectives z et z' tel que z' = $-\frac{1}{\bar{z}}$

- 1. Montrer que les points O,M et M'sont alignés
- 2. Montrer que $\overline{z'+1} = \frac{1}{z}(z-1)$
- 3. Soit A et B les points d'affixes respectives 1 et (-1). On désigne par (\mathcal{C}) le cercle de centre A et de rayon OA et M (z) un point de (\mathcal{C})
 - a)Vérifier que |z-1|=1
 - b)Montrer que |z'+1|=|z'| et interpréter géométriquement cette égalité
 - c)Déduire de ce qui précède une construction géométriquement du point M' à partir de M
- 4. On suppose que $z\neq 1$ et M_1 le symétrique de M par rapport à $(0,\vec{u})$
 - a) On pose $a=rac{z'+1}{z'-1}$. Exprimer a en fonction de $ar{z}$
 - b)Donner une interprétation géométrique de Arg(a)

Exercice N°4: (5 points)

Soit f la fonction définie par :
$$f(x) = \begin{cases} -x + \sqrt{x^2 + x + 1} &, si \ x < 0 \\ \frac{x sin(\frac{1}{x})}{x^2 + 5} + 1 &, si \ x > 0 \end{cases}$$

- 1. a)Calculer $\lim_{-\infty} f$ b)Montrer que Δ : $y=-2x-\frac{1}{2}$ est une asymptote à (\mathcal{C}_f) au voisinage de $-\infty$
- 2. Calculer $\lim_{+\infty} f$ et interpréter graphiquement le résultat
- 3. Montrer que f est prolongeable par continuité en 0 et donner son prolongement g
- 4. Etudier la dérivabilité de g en 0

Rien ne sert à courir il faut partir à point

