Chimia (100 paints)

Chimie: (08 points)

Exercice n°1: (04 points)

On dissout totalement 1,7 g de nitrate de sodium NaNO₃ dans 100 mL d'eau.

On obtient une solution S.

1/ Compléter le tableau suivant : (1,5 pts/A)

soluté	Solvant	S
NaNO ₃	Eau	Aqueuse de NaNO ₃

2/ Calculer la concentration massique C_m de la solution S.(0,5 pt/A,B)

$$C_{\rm m} = \frac{\rm m}{\rm v} = \frac{1.7}{0.1} = 17 \text{ g.L}^{-1}$$

 $3/On donne en g.mol^{-1}: M(Na) = 23; M(N) = 14 et M(O) = 16$

a) Calculer la masse molaire M du soluté. (0,5/A,B)

$$M(NaNO_3) = M(Na) + M(N) + 3M(O) = 23 + 14 + 48 = 85 \text{ g.mol}^{-1}$$
.

b) Déduire le nombre de moles **n** dissout. (0,5/A,B)

$$n = \frac{m}{M} = \frac{1.7}{85} = 0.02 \text{ moles} = 2.10^{-2} \text{ moles}$$
.

c) Calculer la <u>concentration molaire</u> C de la solution C (0,5/A,B)

$$C = \frac{n}{v} = \frac{0.02}{0.1} = 0.2 \text{ mol.L}^{-1}$$

d) Retrouver la concentration massique C_m en utilisant C. (0,5/A,B)

$$C = \frac{C_m}{M} \Rightarrow C_m = C \times M = 0, 2 \times 85 = 17 \text{ g.L}^{-1}$$
.

Exercice N° 2: (04 points)

<u>La solubilité</u> du chlorure de sodium dans l'eau <u>à 20°C est</u> $s_1 = 360 \text{ g.L}^{-1}$ et à <u>60°C est</u> $s_2 = 365 \text{ g.L}^{-1}$

On dissout à 60°C une masse m = 32 g de chlorure de sodium dans 100 mL d'eau pour obtenir une solution S.

1/ Calculer la concentration C de la solution. (0,75pt/A,B)

$$_{\cdot} C = \frac{m}{v} = \frac{32}{0.1} = 320 \text{ g.L}^{-1}$$

2/ La solution est-elle saturée ou non ? Justifier.(0,75pt/C)

C<s₂ donc solution non saturée.

3/ Quelle masse m₁ de chlorure de sodium faut-il ajouter à S pour quelle soit saturée sans dépôt ?(1pt/B,C)

$$s_2 = \frac{m_{max}}{v} \Rightarrow m_{max} = s_2 \times v = 365 \times 0, 1 = 36, 5 \text{ g Donc } m_1 = m_{max} - m \Rightarrow m_1 = 36, 5 - 32 = 4, 5 \text{ g}.$$

- 4/ On refroidit la solution saturée précédente de 60°C à 20°C.
 - a) Dire ce qui se passe ? (0,5pt/C)

s₂>s₁ donc solution saturée avec dépôt.

b) Déduire la masse m2 du dépôt de chlorure de sodium (1pt/B,C)

$$s_1 = \frac{m_{\text{max}}}{v} \Rightarrow m_{\text{max}} = s_2 \times v = 360 \times 0, 1 = 36 \text{ g Donc } m_2 = m_1 - m_{\text{max}} \Rightarrow m_1 = 36, 5 - 36 = 0, 5 \text{ g}$$

Physique: (12 points)

Exercice N°1: (04 points)

Compléter les phrases suivantes par les *mots qui conviennent* : positions, densité, trajectoire, rectiligne, moment, retardée, vitesse moyenne, masse, durée, mouvement, balance, distance.

- a) La trajectoire est l'ensemble des positions occupées par un point mobile au cours de son mouvement.
- b) La vitesse moyenne notée V_{moy} d'un point mobile est égale au quotient de la distance parcourue par le mobile à la durée Δt du parcours.
- c) La trajectoire d'un mobile est une droite son mouvement est dit rectiligne.
- d) Quand la vitesse moyenne d'un point mobile diminue, on dit que son mouvement est retardé.

Exercice N°2: (08 points)

Un point mobile M en mouvement dans un repère (Oy) suivant voir la figure(a):

1/ Compléter les tableaux (1) et (2) suivants : (2 pts/A)

a)

	positions	M ₂	M ₃	M_0	M ₁	M ₄
(1)	Y (km)	0,6	0,2	0	-0,2	- 0,8
	t(h)	0,4	0,8	1,2	1,6	1,8

 $\mathbf{y} \mathbf{M}_{2}$

 $0,2 M_3$ $0 - M_0$ M_1

M₄

b)	nositions	N4	N/A	N/A	N/A	N/A
(2)	positions	M ₂	M_3	M ₀	M_1	M ₄
()	Y (km)	0	-0,4	-0,6	-0,8	-1,4

2/

- a) Calculer la distance $d = M_4M_2$ pour les deux tableaux : (2pts/A)
 - Pour le tableau (1)

$$d = Y_2 - Y_4 = 0,6 - (-0,8) = 1,4 \text{ km} = 1400 \text{ m}$$

• Pour le tableau (2)

$$d = Y_2 - Y_4 = 0 - (-1, 4) = 1, 4 \text{ km} = 1400 \text{ m}$$

3/ a) Calculer la durée Δt du parcours M_4M_2 (1 pt/A)

$$\Delta t = t_4 - t_2 = 1,8 - 0,4 = 1,4 \text{ h} = 5040 \text{ s}$$

b) Déduire la vitesse moyenne **V**_{moy} du mobile en **km.h**⁻¹ puis en **m.s**⁻¹ (3pts/A,B)

$$V_{moy} = \frac{d}{\Delta t} = \frac{1,40}{1.4} = 1 \text{ km.h}^{-1}$$

Or 1 m.s⁻¹ = 3,6 km.h⁻¹
$$\Rightarrow$$
 V_{moy} = $\frac{1}{3,6}$ = 0,27 m.s⁻¹

Ou bien:
$$V_{moy} = \frac{d}{\Delta t} = \frac{1,40}{1,4} = \frac{1400}{5040} = 0,27 \text{ m.s}^{-1}$$