Lycée secondaire :
Ibn Khaldoun

Devoir de synthése N°2
Epreuve :

Mathématiques
Durée : 3 H

Proposé par :
Arfaoui khaled

Exercice 1: (3 points)

L'élève doit écrire sur sa copie le numéro de la question et la lettre correspondante à la bonne réponse

 1° / le nombre réel $\ln(\frac{1}{\sqrt{e}}$) est égale à :

a)
$$\frac{1}{2}$$

c)
$$-\frac{1}{2}$$

 $2^{\circ}\underline{l}$ la limite de la fonction $f(x) = \frac{e^{2x}-1}{x^2}$ à gauche en 0 est

$$b) + \infty$$

 3° / le nombre réel $e^{-2\ln(\frac{1}{\sqrt{e}})}$ est égale à :

 4° / la fonction f(x) = ln (lnx) est définie sur]0,+ ∞ [

EXERCICE N°2 (4pts)

Soit A la matrice définie par : A =
$$\begin{pmatrix} 2 & -1 & 3 \\ -3 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

- 1/ Calculer déterminant de A et en déduire que A est inversible
- 2/a) Calculer A² puis B = 4 A A² et le produit A.B.
 - b) En déduire A⁻¹ la matrice inverse de A
- 3/ Résoudre Dans IR 3 le système $S: \begin{cases} 2x-y+3 \ z=-1 \\ -3x+y-z=5 \\ x+y+z=-1 \end{cases}$

EXERCICE N°3 (5 pts)

On considère la suite définie sur IN* par : $I_n = \int_1^e x(\ln x)^n dx$

- 1/ Calculer I_1 au moyen d'une intégration par parties
- 2/a) Montrer que pour tout n de IN*, $I_n \ge 0$
 - b) Montrer que I_n est décroissante et en déduire qu'elle est convergente
- 3/ a) En utilisant une intégration par parties , démontrer que pour tout n de IN* :

$$I_{n+1} = \frac{e^2}{2} - \frac{n+1}{2} I_n$$

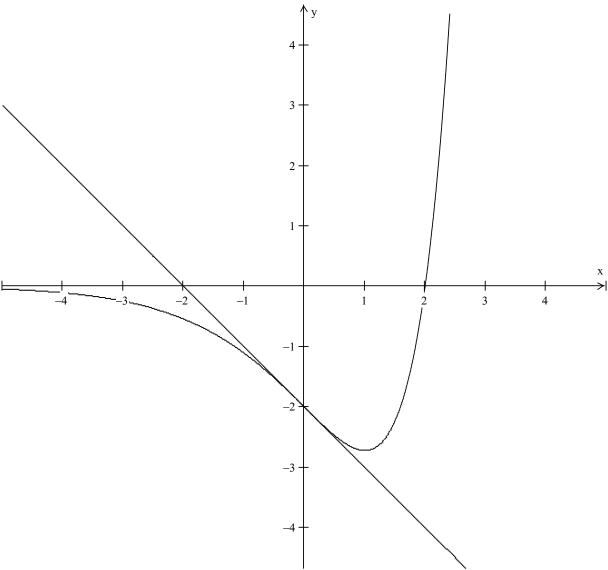
- b) En déduire que pour tout n de IN* , on a : $\frac{e^2}{n+3} \ \le \ I_n \ \le \frac{e^2}{n+2}$
- c) Déduire alors $_{n}\underline{\text{Lim}}_{+\infty}\ I_{n}$

2/3

EXERCICE N°4 (8pts)

Partie A

Dans le plan muni d'un repère orthogonal, la courbe (C) ci-dessous représente une fonction f définie sur IR la tangente D à la courbe (C) au point A(0, -2) passe par le point B(2, -4)



On désigne par f' la fonction dérivée de f

- 1) a) Donner la valeur de f(0)
 - b) Justifier que f '(0) = -1
- 2) On admet qu'il existe deux réels a et b tels que, pour tout réel x, f (x) = (x + a) e^{bx}
 - a) Vérifier que pour tout réel x, $f'(x) = (bx + ab + 1) e^{bx}$
 - b) Utiliser les résultats précédents pour déterminer les valeurs exactes de a et b

Partie B

On considère maintenant la fonction f définie sur IR par f (x) = (x-2) e x

- 1) Donner l'expression de f '; En déduire le sens de variation de f
- 2) a) Déterminer $\underset{x}{\underline{\text{Lim}}_{+\infty}} f(x)$
 - b) Déterminer $_{x}$ $\underline{\text{Lim}}_{-\infty}$ f (x) . Interpréter graphiquement le résultat obtenu.
- 3) En intégrant par parties Calculer $\int_{2}^{3} f(x) dx$
- 4) Calculer l'aire de la partie du plan limitée par $\$ la courbe ($\$ C) , l'axe des abscisses et $\$ les droites $\$ x= 1 et $\$ x = 3