# ARITHMÉTIQUE

## **EX 1:**

- 1) Déterminer les entiers relatifs n qui divise n+12
- 2) Déterminer tous les entiers relatifs n tel que
  - a) 3n+4 divise n+6
  - b) N-4 divise 3n+24
  - c) N-1 divise n+17

### **EX 2:**

Soit x et y deux entiers naturels, avec x>y

- 1) Montrer que si  $x^2 y^2 = 7$  alors x-y et x+y sont des diviseurs de 7
- 2) Déterminer tous les entiers naturels x et y tels  $x^2 y^2 = 7$

# **EX3:**

Soit n un entier naturel

- 1) Montrer que  $7^{2n}$  + 3 est divisible par 4
- 2) Montrer que  $4^{4n+2} 3^{n+3}$

# **EX4:**

1) Résoudre dans Z

a) 
$$x^2 \equiv 1[8]$$

b) 
$$x^2 \equiv -1[11]$$
 c)  $x^2 \equiv -2[11]$ 

c) 
$$x^2 \equiv -2$$
 [11]

#### **EX5**:

Trouver x et y

- a)  $x \vee y = 60 \text{ et } x \text{ y} = 180 \text{ et } x < y$
- b)  $x^2 y^2 = 405$  x ^ y = 3 X > 0 et y > 0

# **Ex 6**

On considère l'équation E : 37 x + 22 y = 1

- 1) Montrer que E admet au moins une solution dans  $\mathbb{Z}^2$
- 2) Trouver une solution particulière
- 3) Résoudre E

# **EX7:**

- 1) Montrer que 13 divise  $3^n + 3^{n+1} + 3^{n+2}$
- 2) a) vérifier que  $3^4 \equiv 1 [5]$ 
  - b) montrer que  $3^{4p+r} \equiv 3^r$  [5]
  - c) en déduire les restes de la division euclidienne de  $\,3^n\,$  modulo  $\,5\,$
  - d) en déduire que  $3^{2012} + 3^{2014}$  est multiple par 5

# **EX8:**

- 1) en utilisant l'algorithme d'Euclide, montrer que les nombres 87 et 31 sont premiers entre eux.
- 2) On considère l'équation € : 87 x +31 y = 2, ou x et y sont deux entiers relatifs.
  - a) Dire pourquoi cette équation admet des solutions.
  - b) Vérifier que le couple ( $x_0$ ;  $y_0$ ) = (10, -28) est solution de (E).
- 3) Soit l'équation (E') : 87 x + 31 y = 0, ou x et y sont deux entiers relatifs.
  - a) Démontrer l'équivalence : (x ;y) est solution de (E) si et seulement si (x- $x_0$  ; y- $y_0$ ) est solution de (E') .
  - b) Résoudre l'équation (E')
  - c) En déduire l'ensemble des solutions de ( E ) .

