LYCEE PILOTE GAFSA

MATIERE: SCIENCES PHYSIQUES ENSEIGNANT: IMED RADHOUANI

CLASSE: $1S_{2-4-5}$

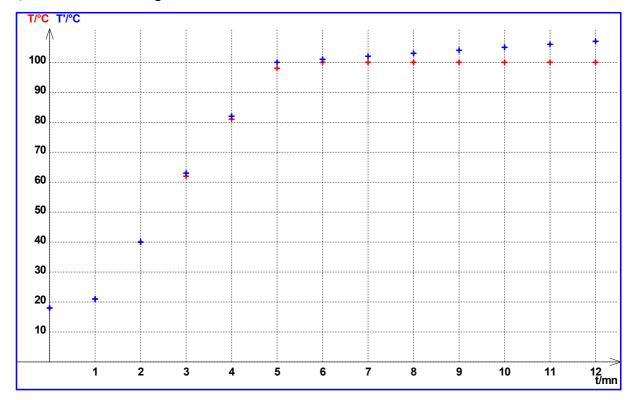
Date: vendredi 10 fevrier

2011

Duree: 1 heure

DEVOIR DE CONTRÔLE N°2

DU	REE. I HEURE		
No	m & prénom :	•••••	••
	ERCICE 1 (3 POINTS) Explique la formation de l'eau salée.	capacités	Barème
	Set Set	A_1	0,5
2.	Nomme les étapes (5) et (6) permettant de séparer le sel. (5)	C ₁	1
3.	Dans le tube b, le liquide du bas est alors que le liquide du haut est Justifie :	\mathbf{A}_2	1,5
	d'eau d'eau		
	аь		
Au	ERCICE 2 (5 POINTS) cours d'une séance de travaux pratiques, un élève a préparée, dans des fioles jaugées de 100mL atre solutions différentes.		
-	(S ₁) une solution aqueuse de chlorure de sodium : il a introduit 1,17g de sel de cuisine dans l'une des fioles et l'a complétée jusqu'au trait de jauge avec l'eau distillée.		
1.	 a. Cette méthode de préparation est dite ☐ dissolution ou ☐ dilution b. Montre que la concentration molaire C₁ de la solution préparée est égale à 0,2.mol.L⁻¹. 	$egin{array}{c} A_1 \ A_2 \end{array}$	0,5
-	(S ₂) une solution d'amidon : il prélève 10mL de solution d'un flacon marqué « solution d'amidon 0,5mol.L ⁻¹ », qu'il a introduit dans la fiole puis l'a complétée jusqu'au trait de jauge avec l'eau distillée.		
2.	 a. Nomme cette méthode de préparation b. Cherche la concentration molaire C₁ de la solution préparée. 	$egin{array}{c} A_1 \ A_2 \end{array}$	0,5
T	PG -1- Imed RADI	HOUA	NI


- 3.	(S ₃) Une solution de glucose de formule Trouve sa concentration en mol.L ⁻¹ .	C ₆ H ₁₂ O ₆ , de	concentrati	on massiqu	ie 1,2g.L ⁻¹ .			A ₁	1
	(S ₄) Une solution de saccharose de conc L'élève a oublié d'étiqueter les solutions Aide-le à retrouver la composition de ch	s préparées.		Carbone 12	Sodium 23	Chlore 35,5		C_1	1
<u>EX</u>	XERCICE 3 (5,5 POINTS)				masse d'u	n décimèti	re		
1.	Lors de la création du système métrique, le <u>kilogramme</u> fut défini comme la masse d'un décimètre cube (1dm³) d'eau pure à la température où sa densité est maximale. 1. Coche la bonne réponse : La densité de l'eau pure est maximale à la température de □ 0°C □ 4°C □ 20°C □ 100°C				C_1	1,5			
	Justifie:								
2.	Exprime la masse volumique de l'eau en							A_2	1,5
-	soin pour correspondre à cette quantité de conditions spécifiées. Plus tard, en 1889, le cylindre en platine par un autre de même masse en platine in	l'eau dans les fut remplacé			0				
3.	de 90% de platine et de 10% d'iridium). Montre que le volume de ce cylindre est sachant que les masses volumiques, à 20 et de l'iridium sont : $\rho_{Pt} = 21,45 \text{g.cm}^{-3} \text{ et } \rho_{Ir} = 22,56 \text{g.cm}^{-3}.$			7	X,	X		C ₂	1,5
4.	Déduis la valeur de X. (hauteur = diamè	etre = X)						C_1	1
	On donne: $(3,9)^3 \approx 59,319$								
Ι	LPG	-2-				Imed F	∟ RADH(OUA	NI

EXERCICE 4 (6,5 POINTS)

Deux élèves ont fait chauffer séparément de l'<u>eau distillée</u> et de <u>l'eau salée</u>. Ils ont relevés toutes les minutes la température T de l'eau.

A₂ 1,5

1. Construit les courbes d'évolution des températures de l'eau distillée (en vert) et de l'eau salée (en noir) au cours du chauffage.

2.	Les deux élèves ont oublié de noter quelle courbe correspondant à l'eau distillée et celle correspondant à l'eau salée. Attribue chaque courbe, en justifiant la réponse.

 A_2

3. Dans quel(s) état(s) physique(s) se trouve l'eau distillée pendant la durée où la température teste constante ?

 \mathbf{A}_1

1

1

1

Qu'appelle-t-on cette transformation ?

 \mathbf{A}_1

4. L'eau distillée est-elle une eau pure ? Justifie.

 A_2

5. Que se passe-t-il si on continue de chauffer l'eau distillée, sans perte de volume, pendant un temps très long ? (complète la courbe).

tres long ? (complete la courbe).

 C_1

LPG -3- Imed RADHOUANI

