15/02/2012

Enseignant: Mr Afli Ahmed

4sc.I

Exercice 1: Choisir la réponse juste.

1.) Une primitive de la fonction $x : \mapsto \frac{8}{\sqrt{4-4x}} \text{ sur }]-\infty$; 1[est :

$$\mathbf{F}(\mathbf{x}) = -2\sqrt{4 - 4x}$$

$$F(x) = -2\sqrt{4-4x}$$
 ; $F(x) = -4\sqrt{4-4x}$; $F(x) = -\sqrt{4-4x}$

$$\mathbf{F}(\mathbf{x}) = -\sqrt{4 - 4x}$$

2.) La fonction $H(x) = x\sqrt{x+1}$ est une primitive sur $]1; +\infty[$ de la fonction :

$$\mathbf{h}(\mathbf{x}) = \frac{3x+2}{2\sqrt{x+1}}$$

$$h(x) = \frac{2x+3}{2\sqrt{x+1}}$$

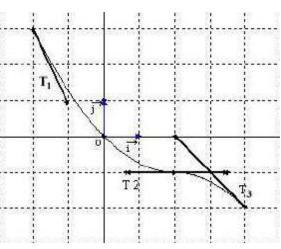
$$h(x) = \frac{3x+2}{2\sqrt{x+1}}$$
 ; $h(x) = \frac{2x+3}{2\sqrt{x+1}}$; $h(x) = \frac{x+2}{2\sqrt{x+1}}$

3.) Le graphique ci-contre est celui d'une fonction f définie [-2 ;4]. On a :

a.
$$f'(2) = -1$$

c.
$$f^{-1}$$
 est croissante sur [-2,3]. Vrai / Faux

d.
$$f^{-1}$$
 n'est pas dérivable en -1 . Vrai / Faux



Exercice 2:

1.) On considère l'équation (E): 5x + 8y = 1; $(x, y) \in \mathbb{Z} \times \mathbb{Z}$

a. / Donner une solution particulière de (E)

b. / Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E)

2.) Soit p un entier naturel tel qu'il existe un couple (a, b) d'entiers tels que

a. / Montrer que le couple (-a, b) est solution de (E).

b. / Montrer que $P \equiv 17[40]$.

* Exercice 3:

1.) a. / Vérifier les congruences suivantes : $2^5 \equiv -1[11]$ et $3^5 \equiv 1[11]$

b. / En déduire que : $2^{10n+5} + 3^{10n+5}$ est divisible par 11.

2.) Soit les entiers a=14n+3 et b=5n+1; $n \in N^*$

Montrer que a et b sont premiers entre eux (utiliser le théorème de Bézout)

Exercice 4:

On considère la fonction g définie sur R par $g(x) = \frac{2x}{\sqrt{x^2+3}} - 1$

- 1.) a. Montrer que g est dérivable sur R et que g'(x) = $\frac{6}{(\sqrt{x^2+3})^3}$
 - b. Calculer g(1) et en déduire le signe de g(x) sur R.
- 2.) Soient f la fonction définie sur R par : $f(x) = 2\sqrt{x^2 + 3} x$ et

 \mathcal{C}_f sa courbe représentative dans un RON

- a. Montrer que $\forall x \in R$ on a : f '(x) = g(x).
- b. Dresser le tableau de variation de f.
- c. Montrer que Δ : y = x est une asymptote à C_f au voisinage de $+\infty$.
- d. Tracer Δ et C_f .
- 3.) Soit la fonction h définie par : h(x) = Ln(f(x))

Justifier que h est définie sur R.

* Exercice 5:

Calculer
$$\lim_{x \to -\infty} \sqrt{x^2 - 3x + 4} + x$$