EXERCICE N:1 (3 points)

Sans justification, indiquer pour chacune des questions suivantes, la bonne réponse.

- 1) ABCD un carré de centre O et de coté 2 cm, alors :
 - 1) $\overrightarrow{AB}.\overrightarrow{AC}$ est égal à :

a)0

b)4

c)-4

2) $\overrightarrow{OA}.\overrightarrow{OC}$ est égal à

a) $-\sqrt{2}$

b) 0

c)-2

II) Soit M un point de la droite (AB) vérifiant $AM \cdot AB = 3$ alors:

a) $M \in [AB]$

b) $M \in [AB] \setminus [AB]$

c) $M \in [BA] \setminus [AB]$

III) Soit \vec{u} et \vec{v} deux vecteurs tels que $||\vec{u}|| = 1$ et $||\vec{v}|| = 2$.

Le réel $(\vec{u} + \vec{v})$. $(\vec{u} - \vec{v})$ est égal à :

a) 5

b 1 - 3

c) 0

IV) Si $|| \overrightarrow{u} || = || \overrightarrow{v} ||$ alors:

a) $\overrightarrow{u} = \overrightarrow{v}$

b) $\overrightarrow{u} = \overrightarrow{v}$ ou $\overrightarrow{u} = -\overrightarrow{v}$

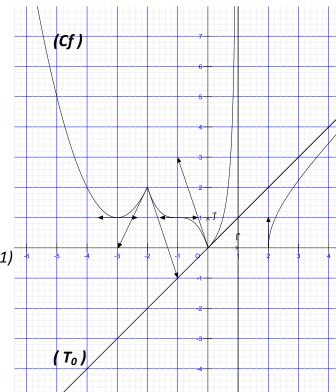
c) $(\vec{u} + \vec{v}) \perp (\vec{u} - \vec{v})$

EXERCICE N: 2 (6 points)

La figure ci-contre contient la représentation graphique (Cf) dune fonction f dans un repère orthonormé

 (O, \vec{i}, \vec{j}) et de la demi-tangente (T_0) à (Cf) au point O.

- 1) Par lecture graphique, déterminer:
 - **a**) Le domaine de définition D_f de f .
 - **b)** $\lim_{x \to -\infty} f(x)$; $\lim_{x \to +\infty} f(x)$; $\lim_{x \to 1^{-}} f(x)$ et $\lim_{x \to 2^{+}} f(x)$
 - c) Les solutions de l'équation : f'(x) = 0.
 - **d)** $f'_d(-2)$; $f'_g(-2)$ et $\lim_{x \to 2^+} \frac{f(x)}{x-2}$
- **2) a)** Donner une équation de la demi-tangente (T_0) .
 - **b**) En utilisant l'approximation affine estimer f (0,001)
- 3) Discuter suivant le paramètre m le nombre de solution(s) de l'équation : f(x) = m.
- **4)** Soit g la fonction définie par : $g(x) = \frac{1}{f(x)}$.
 - **a**) Déterminer le domaine de définition D_a de g.
 - **b)** Calculer $\lim_{x\to 1^-} g(x)$; $\lim_{x\to 2^+} g(x)$; $\lim_{x\to +\infty} g(x)$ et $\lim_{x\to 3^-} \frac{g(x)-1}{x+3}$



$\underline{EXERCICE \, \mathcal{N}: 3}$ (6 points)

Soit f la fonction définie sur IR par : $f(x) = -x^3 + 3x + 1$.

On désigne par (Cf) sa courbe représentative dans le repère orthonormé $R(O, \vec{i}, \vec{j})$.

- 1) Soit a un réel.
 - **a)** Montrer que $f'(a) = -3a^2 + 3$.
 - **b**) Donner une équation cartésienne de la tangente (T) à (Cf) au point d'abscisse 0.
 - c) Existe-il une tangente à (Cf) strictement parallèle à (T) ? Justifier la réponse .
 - **d**) Déterminer les points A et B de (Cf) dont les tangentes sont perpendiculaires à $\Delta: x 9y + 3 = 0$

2) Soit
$$g$$
 la fonction définie sur IR par :
$$\begin{cases} g(x) = \frac{x^3 - x^2}{x - 1} + 2 & \text{si } x \in] - \infty; 1[\\ g(x) = f(x) & \text{si } x \in [1; + \infty[$$

On désigne par (Cg) sa courbe représentative dans le repère R

- **a**) Calculer les limites suivantes : $\lim_{x \to -\infty} g(x)$ et $\lim_{x \to +\infty} g(x)$.
- **b**) Montrer que g est continue en 1.
- c) Etudier la dérivabilité de g en 1 . Interpréter géométriquement les résultats obtenus .

EXERCICE N:4 (5 points)

Soit f la fonction définie sur IR par : $f(x) = 1 + \cos(2x) - \sin(2x)$.

- **1) a)** Calculer: $f(\frac{3\pi}{2})$ et $f(-\frac{7\pi}{4})$.
 - **b**) Montrer que pour tout $x \in IR$; $f(x) = 2\sqrt{2}\cos(x)\sin(\frac{\pi}{4} x)$.
 - c) Résoudre dans IR l'équation : f(x) = 0.
- **2) a)** Montrer que pour tout $x \in IR$; $f(x) = 1 + \sqrt{2}\cos(2x + \frac{\pi}{4})$.
 - **b**) Résoudre dans IR l'inéquation $f(x) \le 2$
- **3)** Soit $g:[0,2\pi] \rightarrow IR$; $x \mapsto g(x) = \frac{f(x)}{\cos(2x)}$.
 - **a**) Déterminer le domaine de définition D_g de g .
 - **b**) Montrer que pour tout $\in D_g$; $g(x) = \frac{\sqrt{2}cos(x)}{cos(\frac{\pi}{4}-x)}$. **« On peut utiliser cos(2x) = sin(\frac{\pi}{2} 2x) »**
 - **c)** Résoudre dans $[0, 2\pi]$ l'équation : $g(x) = \sqrt{2}$.