Lycées : Houmt Souk 2 **Djerba**

Irf: Berriche Ridha

Devoir de synthèse $\mathcal{N}^{\circ}3$

Sciences physiques

Année scolaire : 2010/2011

Section: 3ème Sc-Exp

Durée : 2 heures

CHIMIE: (9 points)

EXERCICE N° 1:(3,5 pts)

I-L'alanine et la glycine sont deux acides α-aminés de formules semi-développées :

H- CH - COOH I NH₂

Alanine (Ala)

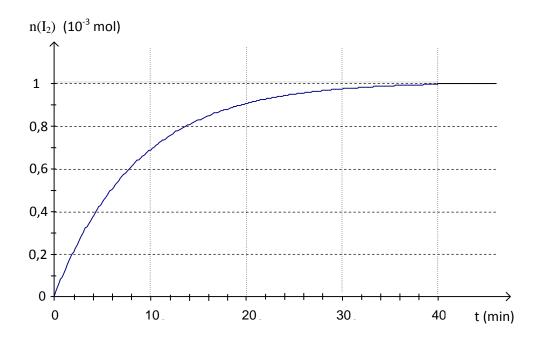
Glycine (Gly)

- 1) Recopier la formule de l'alanine, entourer et nommer les fonctions acide carboxylique et amine. (A2; 0,25pt)
- 2) Nommer ces deux acides selon la nomenclature systématique. (A2; 0,5pt)
- 3) a- L'un de ces acides α-aminés possède un atome de carbone asymétrique. Lequel? Justifier votre réponse.
 - b- Recopier sur votre copie la formule de cet acide α-aminé et indiquer avec un astérisque (*) le carbone asymétrique. (A₂; 0,25pt)
- 4) Représenter en projection de Fischer, la configuration L de l'alanine. (A2; 0,5pt)
- II- On réalise un mélange équimolaire d'alanine et de glycine on peut obtenir deux dipeptides.
- 1) Écrire l'équation de la réaction de condensation de l'alanine et de la glycine qui permet d'obtenir le dipeptide alanine glycine (Ala-Gly) et entourer la liaison peptidique dans le dipeptide obtenu. (A₂; 1pt)
- 2) Dans une solution aqueuse d'alanine, on trouve un ion dipolaire ; Ecrire sa formule semi-développée.(A2; 0,5pt)

EXERCICE N° 2 :(5,5 pts)

Les ions iodure I^- s'oxydent par les ions peroxodisulfate $S_2O_8^{2-}$ selon une réaction lente représentée par l'équation suivante :

$$2I^{-} + S_{2}O_{8}^{2-} \rightarrow I_{2} + 2SO_{4}^{2-}$$


A l'instant t = 0, on réalise un mélange S à partir d'un volume $V_1 = 10$ mL d'une solution d'iodure de potassium $(K^+ I^-)$ de concentration $C_1 = 0.5$ mol. L^{-1} et d'un volume $V_2 = 10$ mL d'une solution de peroxodisulfate de sodium $(2Na^+ + S_2O_8^{2-})$ de concentration $C_2 = 0.1$ mol. L^{-1} .

I- Étude du mélange réactionnel

- 1) Déterminer les quantités de matière initiales de deux réactifs $n_i(I^-)$ et $n_i(S_2O_8^{2-})$ présents dans le système chimique.(A2;0,5pt)
- 2) Dresser le tableau d'avancement de ce système chimique. (A2; 1pt)
- 3) a- Rappeler la définition de l'avancement maximal d'une réaction chimique. (A1; 0,25pt)
 - b- Déterminer l'avancement maximal x_{max} de cette réaction chimique. (A₂; 0,5pt)
 - c-Déterminer le réactif limitant dans le mélange S. (A2; 0,25pt)

4) Le suivi de la formation du diiode dans le mélange (S), par une méthode appropriée, a permis de tracer la courbe représentant la variation de n (I₂) en fonction du temps.

- a-Déterminer l'avancement final x_f de cette réaction. (A₂; 0,5pt)
- b-Calculer la valeur de taux d'avancement final τ_f de cette réaction. (A₂; 0,25pt)
- c-Déduire en justifiant si cette réaction est totale ou limitée. (A2; 0,5pt)
- 5) a- Déterminer l'avancement x_1 de la réaction à la date $t_1 = 10$ min. (A₂; 0,25pt)
 - b- Déterminer à cette date les quantités de matière des constituants du système chimique. (A2; 0.5pt)

II- Dosage du diiode formé après 40 minutes

On veut vérifier, par un dosage, la quantité de matière de I_2 donnée par la courbe à la date t=40 min. Pour cela, on procède de la façon suivante :

- On introduit, à t = 40 min, un volume V = 5mL du mélange réactionnel S dans un bécher contenant de l'eau glacée.
- On dose le diiode présent dans le volume V par une solution de thiosulfate de sodium $(2Na^+ + S_2O_3^{2-})$ de concentration $C_0 = 0.05$ mol. L^{-1} , en présence d'empois d'amidon.

L'équation de cette réaction de dosage est :

$$I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$$

- 1) Noter la variation de couleur observée dans le bécher à l'équivalence. (A2; 0,25pt)
- 2) a- Déterminer la quantité de diiode n' (I_2) contenue dans volume V sachant que le volume de la solution de thiosulfate ajouté pour atteindre l'équivalence est $V_{0E} = 10$ mL. (A₂; 0,5pt)
 - b-Retrouver la valeur de $n(I_2)$ donnée par la courbe à t=40 min. (A₂; 0,25pt)

PHYSIQUE:(11points)

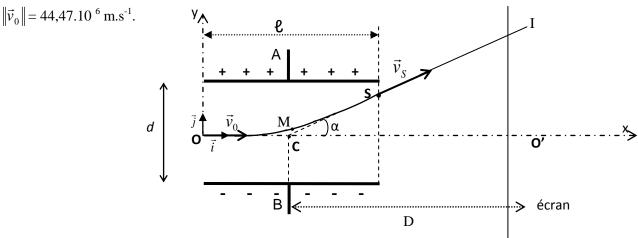
EXERCICE N° 1 :(5, 25pts)

Dans tout l'exercice, on néglige le poids d'un électron devant la force électrique.

Des électrons pénètrent en O, avec la vitesse \vec{v}_0 horizontale, entre les plaques métalliques horizontales A et B. Les plaques de longueur L = 10 cm sont distantes de d = 6 cm.

En absence de champ électrique entre les plaques, on observe une tache O' sur l'écran se trouvant a une distance D = 55 cm du centre C des plaques.

On établit entre A et B une tension $U = V_A - V_B$, on constate une tache qui se forme en un point I. Le mouvement des électrons est étudie dans le repère $(0, \vec{i}, \vec{j})$ (voir la figure).



- 1) Représenter sur la page à rendre, la force électrique \vec{F}_e qui s'exerce sur un électron au point M de la trajectoire ainsi que le vecteur champ électrique \vec{E} qui règne entre les plaques A et B. Justifier toutes vos réponses. (A₂; 1pt) 2) a- Déterminer les lois horaires de mouvement de l'électron. (A₂; 0,5pt)
 - b- Montrer que l'équation cartésienne de la trajectoire d'un électron entre deux plaques A et B est de la forme:

$$y = \frac{eU}{2mdv_0^2}x^2$$
. (A₂; 0.75 pt)

- 3) a) Vérifier que l'ordonnée y_s de point de sortie S de champ électrique vaut 2 cm. (A₂; 0,25pt)
 - b) Déduire la valeur de la déviation électrique α. (A2; 0,5pt)
 - c) Déterminer la valeur de la déflexion électrique Y= O'I . (A2; 0,5pt)
- 4) a) Déterminer la différence de potentiel électrique U' = $V_S V_O$. (C; 0, 5pt)
 - b) Déduire la valeur de la vitesse au point de sortie S. (A2; 0,5pt)
- 5) Préciser en le justifiant, la nature de mouvement des électrons après leur sortie de champ électrique ? (A2; 0,5pt)
- 6) Dans quel type d'appareil utilise-t-on un tel système ? (A₁; 0,25pt)

On donne : la masse de l'électron est m = $9,1.10^{-31}$ kg ; la charge élémentaire e = $1,6.10^{-19}$ C ; $U = 2,7.10^3$ V

EXERCICE N° 2 : (5.75pts)

Le spectrographe de masse est un dispositif utilisé pour la séparation des isotopes. Il est constitué :

- d'une chambre (1) d'ionisation dans laquelle sont ionisés les isotopes à séparer,
- d'une chambre (2) d'accélération des ions dans laquelle règne un champ électrique uniforme \vec{E} créé par une tension $U = V_{p_1} V_{p_2}$ appliquée entre deux plaques (P₁) et (P₂) parallèles et distantes de d.,
- d'une chambre (3) de déviation dans laquelle règne un champ magnétique uniforme \vec{B} ,
- d'un détecteur d'ions.

On se propose de séparer des isotopes de l'élément cuivre Cu²⁺ de charge q = 2e. On négligera dans tout l'exercice, le poids de l'ion cuivre devant les autres forces qui interviennent.

- a- Préciser le sens de \vec{E} pour que des ions positifs, sortant de la chambre d'ionisation en O_1 avec une vitesse nulle, aient, dans la chambre d'accélération, un mouvement rectiligne accéléré suivant la direction O_1O_2 ?

 Justifier la réponse. (A₂; 0,5pt)
 - b-Déduire, en justifiant, le signe de U. (A2; 0,25pt)
- 2) a- Montrer que l'accélération de la particule chargée dans la chambre (2) est a = $\frac{q}{m} \|\vec{E}\|$. (A₂; 0,5pt)

b-Montrer qu'au point O_2 , l'énergie cinétique est la même pour les différents types d'ions accélérés qui correspondent au même élément chimique et qui portent la même charge électrique. En est-il de même pour les vitesses ? Justifier la réponse. (A₂; 1pt)

- 3) a-Dans la chambre (3) règne un champ magnétique \vec{B} normal au plan contenant O_1 , O_2 et I. Préciser son sens pour que des ions positifs soient déviés vers un point d'impact I du détecteur. (A₂; 0,25pt)
 - b-Représenter sur la page à rendre, la force de Lorentz \vec{F}_m qui s'exerce sur un ion rentrant par le point O_2 ainsi que le vecteur champ magnétique \vec{B} qui règne dans la chambre (3). (A₂; 0,5pt)
- 4) a-Montrer que le mouvement des ions Cu²⁺ dans la chambre (3) de déviation est circulaire uniforme de rayon

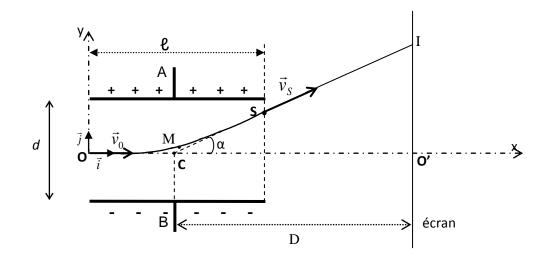
$$R=rac{m.\left\| \overrightarrow{v}
ight\|}{q.\left\| \overrightarrow{B}
ight\|}$$
 . (A2; 1pt)

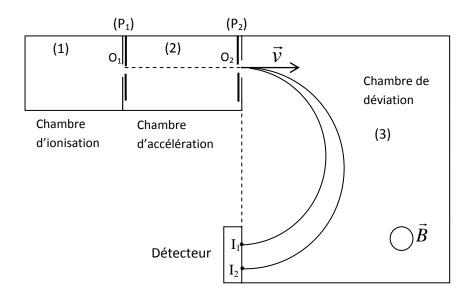
b - Déduire que ce rayon $R = \sqrt{\frac{m.U}{e.\|\vec{B}\|^2}}$. (A₂; 0,25pt)

- 5) Déterminer l'intensité du champ magnétique \vec{B} qui doit régner dans la chambre (3) pour que l'ion $^{A_1}Cu^{2+}$, de masse $m_1=105,21.10^{-27}$ kg dont le nombre de masse $A_1=63$, vienne frapper le détecteur au point d'impact I tel que $O_2I_1=18$ cm. (A2; 0.5pt)
- 6) a- Au niveau du détecteur et en un point I_2 , tel que $O_2I_2 = 18$,4cm on reçoit l'ion positif désigné par $^{A_2}Cu^{2+}$ de masse m_2 .

Montrer la relation
$$\left(\frac{O_2I_2}{O_2I_1}\right)^2 = \frac{A_2}{A_1}$$
 (A₂; 0,5pt

b-déterminer le nombre de masse A_2 de l'ion $^{A_2}Cu^{2+}$ considéré. A_2 ; 0,5pt)


On donne:


Charge électrique élémentaire : e = 1,6.10 $^{-19}$ C $\left|U\right| = \left|V_{p_1} - V_{p_2}\right| = 500 \text{V}$

Unité de masse atomique : $u = 1,67.10^{-27} \text{ kg}$

Masse d'un ion m = A.u

Annexe (à rendre avec la copie)

