

Lycée TheLepTe

Serie d'exerciceS n°2

Niveau : 4 ème Science expérimentales

THEMES: MathématiqUES(fonctions

logarithmes-foncyions exponentielles-integrales-

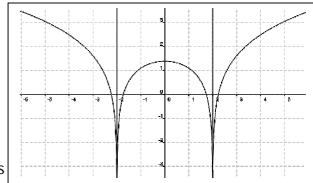
suites réelles

Prof : Mhamdi Abderrazek

2011-2012

EX1:

la courbe C_f ci contre représente une fonction dérivable sur son ensemble de définition D_f dont les droites d'équations :x=-2 et x=2 sont deux asymptotes à C_f



1).par lecture graphique répondre aux questions suivantes :

- **a)**. Déterminer D_f et calculer les limites de f aux bornes de D_f
- **b)**. Résoudre l'équation f'(x) = 0 et préciser le nombre de solutions de l'équation f(x) = 0
- c).Dresser le tableau de variation de f
- **d)**.Discuter suivant le paramètre réel m le nombre de solutions de l'équation f(x)=m.
- **2).** Sachant que $f(x) = \ln|ax^2 + b|$ et les solutions de l'équation f(x) = 0 son $t: -\sqrt{5}$; $\sqrt{5}$; $-\sqrt{3}$ et $\sqrt{3}$ montrer que a = 1 et b = -4
- 3). Retrouver le tableau de variation de f
- **4)**.Soit g la restriction de f à l'intervalle]2 ; +∞ [
 - a). Montrer que g admet une fonction réciproque h dont on précisera son ensemble de définition $\, D_h \, .$
 - **b)**.Tracer C_h, la courbe de h, dans le même repère.
 - ${\bf c)}.$ Etudier la dérivabilité de h sur ${\bf D_h}$ et dresser le tableau de variation de h.
 - **d)**.Expliciter $h(x) \forall x \in D_h$ et retrouver le tableau de variation de h.

EX2:

Soit f la fonction définie sur IR par $f(x) = 2x + \frac{e^x}{e^x + 1}$ et C_f la courbe de f dans un repère orthonormé (0; \vec{i} ; \vec{j})

- **1).a).**Montrer que $\Omega(0;\frac{1}{2})$ est un centre de symétrie de C_f
 - **b).**Vérifier que $\Omega \in C_f$.Conclure.
 - c). Déterminer une équation de la tangente T à \mathcal{C}_f au point Ω .
- **2).**Etudier f et tracer C_f .
- 3). Déterminer le nombre de solutions de l'équation : f(x) = m où $m \in IR$
- **4).a).**Soit $\alpha > 2$.Calculer \mathbf{A}_{α} l'aire de la partie du plan limitée par les droites d'équations : $\mathbf{x} = \ln(2)$; $\mathbf{x} = \ln(\alpha)$ et la droite \mathbf{D} : $\mathbf{y} = 2\mathbf{x} + 1$ et la courbe \mathbf{C}_f
 - **b)**.Calculer alors la limite de A_{α} quand x tend vers $+\infty$

EX3:

Soit (I_n) la suite définie sur IN^* par $I_n = \int_0^1 x^n \sqrt{x+1} dx$

- 1).Calculer I₁
- 2). Montrer que (In) est décroissante
- 3).a).Montrer que $\frac{1}{n+1} \le I_n \le \frac{\sqrt{2}}{n+1} \, \forall \, n \in IN^*$
 - **b).**En déduire que (I_n) est convergente et calculer sa limite.
- **4).a).**Montrer que $\forall x \in [0;1]$ on a : $0 \le \sqrt{2} \sqrt{x+1} \le \frac{1-x}{2}$
 - **b)**. Montrer que $\frac{\sqrt{2}}{n+1} \frac{1}{n^2} \le I_n \le \frac{\sqrt{2}}{n+1} \ \forall \ n \in IN^*$
 - c). En déduire que (nl_n) est convergente et calculer sa limite.

EX4:

Soit f la fonction définie sur IR par $f(x) = x \ln(1-x) + \frac{1}{4} \sin x < 0$ et $f(x) = \frac{e^x}{x^2+4} \sin x \ge 0$

- 1).a).Etudier la continuité et la dérivabilité de f en 0.
 - **b)**.Etablir le tableau de variation de f sur IR
 - c). tracer C_f la courbe de f dans un repère orthonormé (o ; \vec{i} ; \vec{j})
- **2).a).**Montrer que $\frac{x^2-2x+4}{(x^2+4)^2} \le \frac{1}{4} \ \forall x \in [0;1]$

- **b)**.En déduire que $0 \le f'(x) \le \frac{3}{4} \ \forall x \in [0;1]$
- 3). Soit g la fonction définie sur [0;1] par g(x)=f(x)-x
 - a). Dresser le tableau de variation de g sur [0;1]
 - **b).i).**Montrer que l'équation f(x) = x admet une unique solution α dans [0;1]
 - ii).Comparer x et f(x) $\forall x \in [0;1]$
- **4)**. Soit la suite réelle (u_n) définie sur IN par : $u_0 = 1$ et $u_{n+1} = f(u_n) \forall n \in IN$
 - **a)**.Montrer que $\alpha \le u_n \le 1 \ \forall \ n \in \mathbb{N}$
 - **b).** Montrer que (u_n) est décroissante
 - c). En déduire que (u_n) est convergente et calculer sa limite.
- **5).a).** Montrer que $|u_{n+1} \alpha| \le \frac{3}{4} |u_n \alpha| \ \forall \ n \in \mathbb{N}$
 - **b)**. Montrer que $|u_n \alpha| \le (\frac{3}{4})^n \ \forall \ n \in \mathbb{N}$
 - **c)**.Retrouver la limite de (u_n) .

EX5:

Soit f la fonction définie sur $[0;\pi]$ par $f(x) = \sin^2(x)$ et C_f la courbe de f dans un repère orthonormé (0; $\vec{i};\vec{j}$)

- **1).** Etudier f et tracer \mathcal{C}_f .
- 2). Linéariser $\sin^2(x)$ et $\sin^4(x)$.
- 3). Calculer ${\bf A}_{\alpha}$ l'aire de la partie du plan limitée par les droites d'équations :x=0;x= π :y=0et la courbe ${\it C}_f$
- **4)**.Calculer le volume du solide obtenu par la rotation de la courbe C_f autour de l'axe des abscisses.

EX6:

Soit f la fonction définie sur]0;+ ∞ [par f(x)= $\frac{x^2-1}{4}$ - 2 ln(x)

- 1).a).Dresser le tableau de variation de f
 - **b).** Montrer que l'équation f(x) = 0 admet dans $]0; +\infty$ [exactement deux racines dont l'une $\alpha \in [3;4]$
 - **c).**vérifier que $\alpha = \sqrt{1 + 8 \ln (\alpha)}$

2). Soit g la fonction définie sur [3; $+\infty$ [par g(x) = $\sqrt{1 + 8\ln(x)}$

Montrer que $g(x) \ge 3$ et que $0 \le g'(x) \le \frac{4}{9} \forall x \in [3; +\infty[$

- **3)**. Soit la suite réelle (u_n) définie sur IN par : $u_0 = 3$ et $u_{n+1} = g(u_n) \ \forall \ n \in IN$
 - **a)**.Montrer que $u_n \geq 3 \ \forall \ n \in \mathbb{N}$
 - **b).** Montrer que $|u_{n+1} \alpha| \le \frac{4}{9} |u_n \alpha| \quad \forall n \in \mathbb{N}$
 - c). Montrer que $|u_n \alpha| \le {4 \choose q}^n \ \forall \ n \in \mathbb{N}$
 - **d).** En déduire que (u_n) est convergente et calculer sa limite.
 - **e).**Trouver n_0 pour que $\left|u_{n_0}-\alpha\right|<10^{-2}$.

EX7:

Soit n un entier naturel On considère la fonction f_n définie sur [0;1] par : $f_0(x) = In(x)$ et $f_n(x) = x^n In(x)$ si n > 0 et on pose $I_n = \int_1^e f_n(x) dx \ \forall \ n \in IN$

- 1).Calculer I₀;I₁etI₂
- 2). Etudier la monotonie de (I_n)
- **3).a).** Exprimer I_n en fonction de n.
 - **b).**En déduire la limite de ($\textbf{I}_n)$ lorsque n tend vers $+\infty$.
 - **c).** la suite (I_n) est elle majorée ? Justifier.

BON TRAVAIL