
	LYCEE SECONDAIRE MAZZOUN	JA 🛠
П	DEVOIR DE CONTRÔLE N° 2	Nom et Pré
ME <i>CA</i> NIQUE	INITE DE PREPARATION DE MEMBRANES DE PILE A COMBUSTIBLE	N° :
AEC.	Réalisé par : HENI ABDELLATIF	Classe: 45.
₹	Nealise pai . HENI ADDELLATIF	A 5:201

Nom et Prénom :		
N° :		
Classe: 4 S.T	/20	
A.S:2011-2012	i	

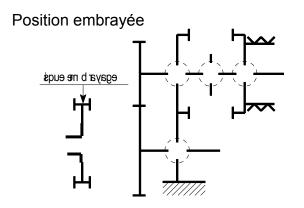
Obstacle

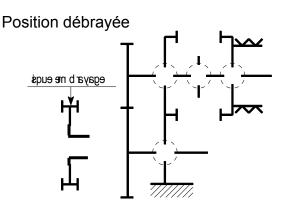
A - PARTIE GENIE MECANIQUE:

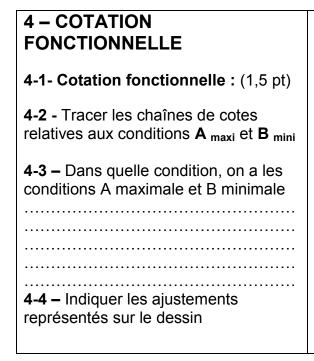
1- En se référant au dossier technique, compléter la modélisation du système : (2 pts)

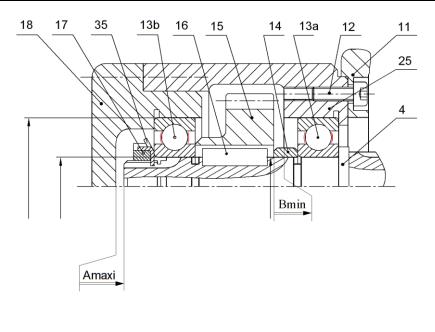
2- En se référant au dessin d'ensemble à la page 5/5, donner les repères et la désignation des composants assurant les fonctions techniques suivantes : (2 pts)

Fonction technique	Composants + repères	adhérence
Transmission de mouvement au tambour		
Transmettre la rotation de l'arbre moteur		
à la poulie (2)		
Transmettre la rotation de la poulie (2)		
à l'arbre (4)		
Transmettre la rotation de l'arbre (4)		
à l'arbre (24)		
Transmettre la rotation de l'arbre (24) au		
tambour		
Embrayage de l'arbre (4)		
]	
Commander l'embrayage		
Avoir une surface de contact liée à l'élément		

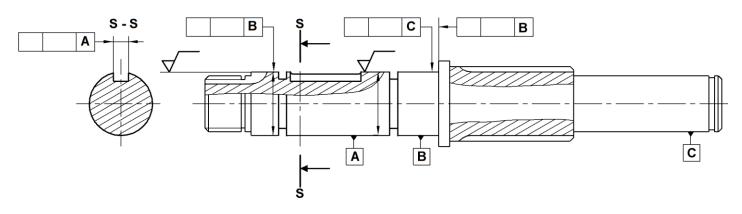

Créer l'effort presseur pour embrayer
Freinage de l'arbre (4)
Commander le frein
Avoir une surface de contact liée à l'élément fixe (frotteur)
Créer l'effort presseur pour freiner


moteur (poulie 2)


 •••


UNITE DE PREPARATION DE MEMBRANES Feuille réponses Page 1/8 DF PILE A COMBUSTIBLE

3°- Compléter les schémas cinématique relatif à l'embrayage suivant les deux positions : (2 pts)



5- ELEMENTS DE DEFINITION D'UN PRODUIT : (1,5 pt)

Sur le dessin de définition de l'arbre (4) :

- a Compléter les spécifications géométriques indiquées (partout IT = 0,05)
- b Compléter les spécifications des états des surfaces Ra 3,2 et Ra 0,8
- c Reporter les cotes fonctionnelles relatives :

Aux chaînes de cotes relatives aux conditions A maxi et B mini

Feuille réponses

UNITE DE PREPARATION DE MEMBRANES

DF PII F A COMBUSTIBI F

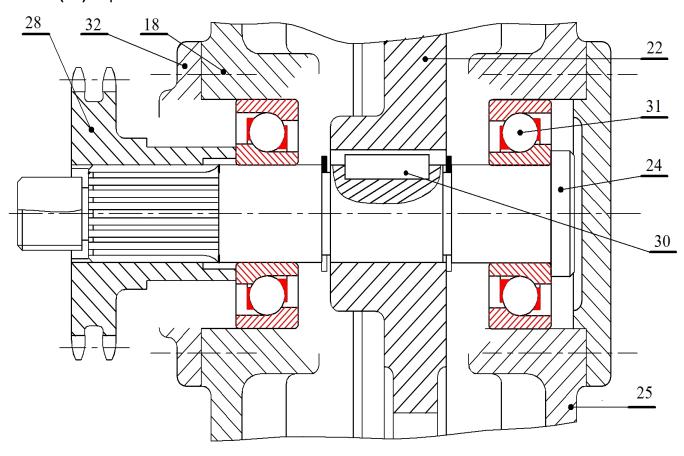
Page 2/8

6 -CALCUL DE PREDETERMINATION ET DE VERIFICATION :

En se référant au dessin d'ensemble et aux schémas cinématique du mécanisme d'entraînement du plateau aspirateur à la page 3/5 et 5/5 :

	- Transmission de mouvement : (3,5 pt) Calculer le rapport r ₁ entre (30) et (2)
b-	Calculer le rapport r ₂ entre (15) et (22)
C-	Calculer le rapport r ₃ entre (28) et (31)
d-	Calculer le rapport global r _g
e- 	Calculer la vitesse de rotation du tambour N _{Tambour}
f- 	Calculer la vitesse de déplacement du tapis d'évacuation V_{Tapis} en m / s sachant que le diamètre du tambour D_T = 500 mm
a – Reg G =	- Résistance des matériaux Torsion (5 pts) L'arbre (4) est en acier de section cylindrique pleine résistance à la limite élastique au glissement $g = 200 \text{ N} / \text{mm}^2$ avec un coefficient de sécurité $s = 3$ et un module d'élasticité transversal = 8. $10^4 \text{ N} / \text{mm}^2$ I tourne à une vitesse de rotation $N_4 = 225 \text{ trs} / \text{mn}$ avec une puissance $P_4 = 1,6 \text{ Kw}$ - Calculer le couple C_4 (M_{t4}) appliqué à l'arbre (4):
b1	- Calculer le diamètre minimal d _{1mini} qui garantie la résistance de l'arbre à la torsion :
c1	– calculer l'angle de torsion α en degré(°) sachant que la longueur de l'arbre L= 2000 mm
	1 - Calculer le diamètre minimal d _{2mini} lorsque l'angle unitaire de torsion ne dépasse pas 1 °/m naxi = 1 ° / m)

UNITE DE PREPARATION DE MEMBRANES DE PII F A COMBLISTIBLE

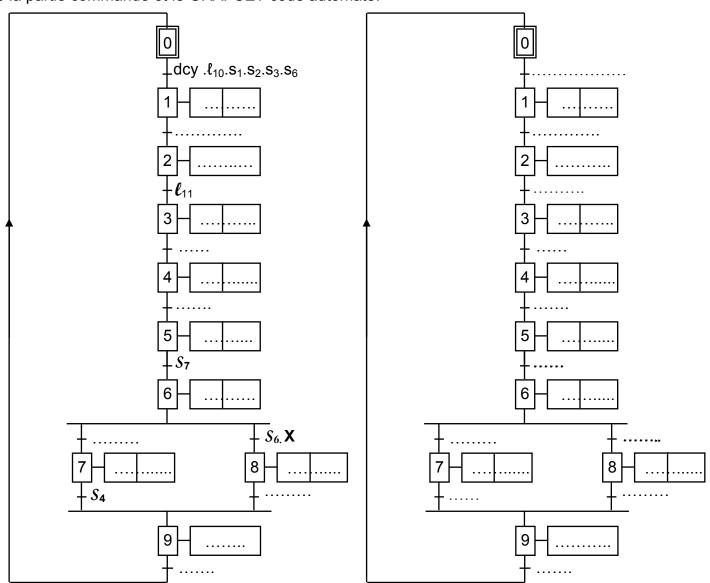

Page 3/8

e1 – Déduire le diamètre \mathbf{d}_{\min} parmi ces deux conditions (de déformant de deformant de d	mation et de résistance).
f1 – Calculer la contrainte tangentielle maximale τ_{maxi} et Représer l'arbre (4) la répartition des contraintes tangentielle τ on donne d =	
Echelle: $\mathbf{\tau}:4\mathrm{N/mm^2}\longrightarrow1\mathrm{mm}$	

6-3- Conception : (2,5 pts)

Pour augmenter le rendement du réducteur et pour la rigidité du montage à cause des vibrations de la transmission par pignon et chaîne, on se propose de modifier le guidage en rotation de l'arbre de sortie (24) par deux roulements à bille à contact oblique type BT.

Sur le dessin de conception ci-dessous : Compléter le montage des roulements, la liaison encastrement du pignon (28) par un écrou à encoche et rondelle frein, compléter la représentation du couvercle (32) et prévoir l'étanchéité des roulements



B-PARTIE GENIE ELECTRIQUE

Réalisé par : TOUAHRA HAFEDH

I- Etude de la commande du système :

1- En se référant au dossier technique (pages 1/5 et 2/5), compléter le GRAFCET d'un point de vue de la partie commande et le GRAFCET codé automate.

2- Déterminer les équations d'activation A et de désactivation D des étapes 6, 8 et 9.

Etapes	Activation	Désactivation
6	A ₆ =	D ₆ =
8	A ₈ =	D ₈ =
9	A ₉ =	D ₉ =

3- En se référant au GRAFCET précédent et aux tableaux d'affectation, page 3/5 du dossier technique, compléter (TSX) la liste des instructions relatives aux étapes 6, 8, 9 et à la sortie KA.

Automate TSX			
	Etape 6 (%M6)	Etape 9 (%M9)	
	Etape 8 (%M8)	Sortie KA	

II- Etude du moteur Mt2:

Le moteur de déplacement **MT2** est un moteur asynchrone triphasé à rotor en court-circuit, portant les indications suivantes : **220V / 380V** ; **11A / 6,4A** ; **n = 1455tr/min**. Le moteur est alimenté par un réseau triphasé **220V / 380V – 50Hz**.

L'essai à vide du moteur sous sa tension nominale a donné les résultats suivants :

Puissance absorbée à vide P_{a0} = 260W ; intensité du courant en ligne I_0 = 3,2A.

Les pertes mécaniques sont évaluées à P_m = 130W dans les conditions normales de fréquence et de tension.


La mesure à chaud de la résistance d'un enroulement du stator a donné $\mathbf{r} = \mathbf{0},65\Omega$.

1- Donner le type du couplage convenable pour que le moteur fonctionne normalement. Justifier.

Feuille réponses	UNITE DE PREPARATION DE MEMBRANES DE PIL E A COMBUSTIBLE	Page 6/8
	www.devolr@t.net	

2-	Quel est le nombre de pôles du stator ?
3-	Pour le fonctionnement nominal, calculer le glissement du moteur.

4- Le fonctionnement du groupe (moteur + charge) est caractérisé par le point de fonctionnement de coordonnée (**T**_u = **19,46Nm**; **n** = **1455tr/mn**). Sachant que le rendement vaut pour ce point **87,7%**, compléter le bilan de puissances ci-dessous par la désignation (D); la formule (F) et le résultat (A.N) en allant dans l'ordre suivant des étapes :

III- Etude Mt1

III-1- Caractéristiques du moteur Mt1

Ce moteur étant alimenté par un réseau triphasé 230/400V - 50 Hz Le graphe ci-dessous représente le couple utile Tu = f(n') de ce moteur et le couple résistant $T_R = f(n')$ du malaxeur qu'il entraine.

A (* 1 1 1 1	T(N _x m)	
 a - A partir de ce graphe relever les coordonnées du point de fonctionnement du moteur en régime établi. 		
le couple utile :	<u>╊╶┼╌</u> ┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼┼╢┤	
 La vitesse de rotation du moteur n' 		
b – En déduire pour ce moteur :Le nombre de paires de pôles au stator :	# + + +	
	█ █ █ █	
Le glissement :	╋╶╁╼┾╌╣╾┿╼╬╌╬╌╬╌╬╌╬┾╬ ╋╌╃═╄╌╃╾╬╌╬╌╬╌╬	
	┸╫┸╫╫	
La puissance utile :		r/mir

III-2- Etude du circuit de puissance du moteur électrique (Mt1) :

Compléter le circuit de puissance du moteur (Mt1) à deux sens de marche	Donner la désignation et la fonction de chaque constituant du circuit de puissance
N L1 L2 L3	Secteur triphasé 230 V/ 400 V – 50 Hz Alimenter le moteur
Q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Q2:
	KM1 et KM2 :
KM1 3 5 KM2 1 3 5 KM2 2 4 6	F1 :
F1 3 5 F2 4 6	
M1 M3~	M1: Moteur asynchrone triphasé à cage d'écureuil à deux sens de marche 400 V/660 V–50 Hz Couplé en