Lycée Ahmed Snoussi

Devoir de contrôle n°2 de sciences physiques

Gafsa

Prof : Ben Daoud

Classe :3T₁

Durée : 2h

Le devoir comporte :

<u>Deux exercices de chimie</u>: <u>Exercice n°1</u>: Analyse quantitative et analyse qualitative d'un composé organique

Exercice n°2 : Alcools aliphatiques saturés

Trois exercices de physique: Exercice n°1: Cinématique d'un point matériel

Exercice n°2: Mouvement rectiligne uniforme - Mouvement rectiligne uniformément varié

Exercice n°3: Mouvement rectiligne sinusoïdal

Exercice n°1:

Données: $Mc = 12 \text{ g.mol}^{-1} \quad Mo = 16 \text{ g.mol}^{-1} \quad M_{H} = 1 \text{ g.mol}^{-1} \quad ;Vm = 24 \text{ L.mol}^{-1}$

L'analyse élémentaire d'un composé organique E formé seulement de carbone, d'hydrogène et d'oxygène a montré qu'il contient **60** % en masse de carbone, **13,3** % en masse d'hydrogène, **26,7**% en masse d'oxygène. Sa masse molaire moléculaire est **M = 60 g.mol**⁻¹.

• Déterminer sa formule brute de E.

- **2** On réalise la combustion complète d'une masse **m = 1,2 g** de E dans le dioxygène de l'air
 - a Ecrire l'équation chimique de cette réaction.
 - b Calculer volume du dioxyde de carbone gazeux obtenu à la fin de cette réaction..

Exercice n°2:

•Reproduire et compléter le tableau suivant :

Alcool	Formule semi-developpée	Formule brute	Nom	Classe
A	CH ₃ – CH – OH I CH ₃			
В		C ₃ H ₈ O		primaire
С			2-méthyl propan-2-ol	

- 2 Les composés A et B sont-ils des isomères de position ou des isomères de chaîne ? Justifier la réponse.
- ❸ L'oxydation ménagée de l'un des alcools précédents par des ions permanganates M nO4 en milieu acide, conduit à un nouvel composé organique D. On effectue des tests chimiques sur le composé D, les résultats sont consignés dans le tableau suivant :

Test	Réactif de Schiff	2,4-D.N.P.H
Résultat	Négatif	Positif

- a- Donner la fonction chimique du composé D.
- c- Identifier l'alcool qui a subit l'oxydation ménagée
- d- Ecrire la formules semi-développée du composé D.

PHYSIQUE: (13points)

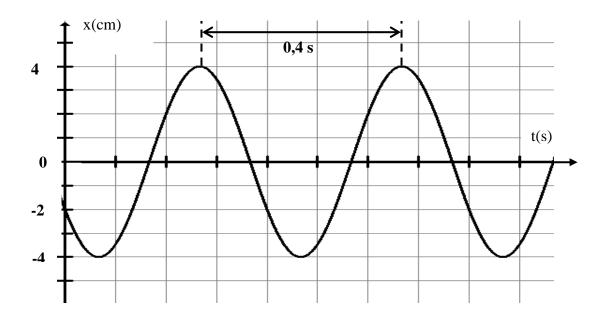
Exercice n°1:

. Un point mobile M se déplace dans un plan muni d'un repère orthonormé (O,i,j), son vecteur espace est : OM=3 t i + (t 2 -t) j. Les unités sont celles du système international.

• Déterminer : a-l'expression du vecteur vitesse du mobile M.

b-l'expression du vecteur accélération du mobile M.

- 2 Etablir l'équation cartésienne de la trajectoire de son mouvement
- **3** Déterminer à l'instant de date t = 0.5 s:
 - a- Les composantes du vecteur vitesse V mobile M.
 - b- Les composantes tangentielle et normale du vecteur accélération mobile M
 - c- Le rayon de courbure de la trajectoire mobile M


Exercice n°2:

Un mobile M décrit un mouvement rectiligne suivant un axe X'X avec une accélération a constante .A l'instant de date t_0 = 0 s ; il part du point M_0 d'abscisse x_0 = -1 m avec une vitesse V_0 = -2 ms⁻¹ et passe par le point M_1 d'abscisse x_1 = 2 m et avec une vitesse V_1 = 4 m.s⁻¹ .

- **1** a Déterminer l'accélération du mobile M.
 - b Ecrire la loi horaire du mouvement du mobile M.
- **2**A l'instant de date t' = 1s ; un second mobile P part d'un point N d'abscisse $x_N = -3$ m en décriant le même axe X'X avec une vitesse constante V' = 2 ms⁻¹.
- a Etablir la loi horaire du mouvement du mobile P.
- b Calculer la date de rencontre de deux mobiles entre $t_i = 1$ s et $t_2 = 4$ s.

Exercice $n^{\circ}3$:

Un solide supposé ponctuel est attaché à un ressort à l'instant $\mathbf{t} = \mathbf{o}$; le solide est ramené au point d'abscisse \mathbf{x}_0 ; on lui communique une vitesse $\vec{V_0}$ et on l'abandonne à lui-même, il effectue donc un mouvement rectiligne sinusoïdal dont l'enregistrement est donné par la figure suivante.

- a En exploitation l'enregistrement déterminer :
 - *la pulsation du mouvement ω..
 - *l'amplitude Xm.
 - *la phase initiale φ .
 - b En déduire la loi horaire x = f(t).
- 2 a Déterminer l'expression de la vitesse en fonction du temps.
 - b En déduire la valeur algébrique de la vitesse initiale \overline{V}_0 .