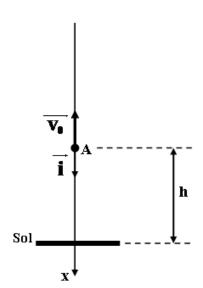
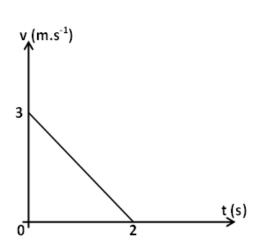
Osérie nº 9


Mouvement rectiligne - Mouvement sinusoïdal - Détermination d'une quantité de matière

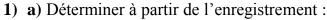
Exercice n° 1:

Une bille est lancée verticalement vers le haut, à un instant pris comme origine des dates, à partir d'un point A situé à la distance h du sol, avec une vitesse initiale de valeur $\|\overrightarrow{V_0}\| = 20 \text{ m.s}^{-1}$. La résistance de l'air est négligeable et la bille n'est soumise qu'à son poids.

- 1) Etablir l'équation horaire $\mathbf{x} = \mathbf{f}(\mathbf{t})$ du mouvement de la bille dans le repère $(\mathbf{A}; \vec{\mathbf{i}})$, où $\vec{\mathbf{i}}$ est un vecteur unitaire dirigé vers le bas.
- 2) Montrer que le mouvement comporte deux phases et préciser à quel instant commence la deuxième phase.
- 3) Sachant que la bille atteint le sol à l'instant de date $\mathbf{t} = \mathbf{5} \mathbf{s}$, déterminer \mathbf{h} .
- **4)** Déterminer la hauteur maximale (par rapport au sol) atteinte par la bille.
- 5) Déterminer la valeur algébrique de la vitesse de la bille quand elle arrive au sol.


On donne
$$\|\overrightarrow{\mathbf{g}}\| = 10 \text{ m.s}^{-2}$$
.

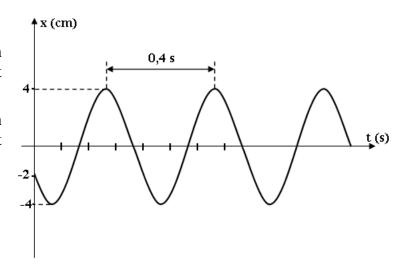
Exercice n° 2:


Un point mobile M est animé d'un mouvement rectiligne dont le diagramme de vitesse est donné par le graphe de la figure cicontre. Le mouvement du point M est rapporté au repère (O, \vec{i}) .

- 1) a) Déterminer à partir du graphe l'expression de la vitesse v en fonction du temps.
- **b**) Déduire la valeur de l'accélération **a** ainsi que la nature du mouvement.
- 2) Préciser les phases du mouvement.
- 3) a) Etablir la loi horaire du mouvement sachant qu'à la date t = 0 s le mobile M part du point O.
- b) Quelle est la distance parcourue par ce mobile entre les instants $t_1 = 0$ s et $t_2 = 4$ s?

Exercice n° 3:

Un solide supposé ponctuel est attaché à un ressort. A $\mathbf{t} = \mathbf{0}$ s, le solide est ramené au point d'abscisse \mathbf{x}_0 , on lui communique une vitesse $\overrightarrow{\mathbf{V}_0}$ et on l'abandonne à lui-même. Il effectue dons un mouvement rectiligne sinusoïdal dont l'enregistrement est donné par la figure ci-contre.



- La pulsation ω du mouvement.
- L'élongation x_0 initiale.
- L'amplitude X_{max} .
- La phase initiale φ.
 - **b**) En déduire la loi horaire $\mathbf{x} = \mathbf{f}(\mathbf{t})$.
- 2) a) Déterminer l'expression de la vitesse en fonction du temps.
 - **b**) En déduire la valeur algébrique de la vitesse initiale $\overrightarrow{V_0}$.
- 3) A l'instant $t_1 > 0$, le mobile repasse pour la première fois par la position d'abscisse x_0 dans le sens négatif.
 - a) Déterminer graphiquement t₁.
 - **b**) Retrouver la valeur de t_1 par le calcul.
- 4) Déterminer la valeur algébrique de la vitesse du solide lors de son premier passage par la position d'abscisse $\mathbf{x} = \mathbf{2}$ cm.

A $V_0 = 60$ mL d'une solution (S_0) de sulfate de fer II $(FeSO_4)$ acidifiée, de concentration molaire C_0 inconnue, on ajoute un volume $V_1 = 10$ mL d'une solution (S_1) de nitrate d'ammonium (NH_4NO_3) de concentration molaire $C_1 = 0,1$ mol.L⁻¹. Un gaz incolore de formule NO (monoxyde d'azote), qui devient roux à l'aire, se dégage.

- 1) Sachant que les ions nitrate (NO_3) de fer II (Fe^{2+}) se transforment respectivement en monoxyde d'azote et en ion fer III (Fe^{3+}) ,
 - a) Ecrire les demi-équations électroniques puis l'équation bilan de la réaction. Déduire les couples redox mis en jeu.
 - **b)** Calculer la quantité d'ions fer II consommés par cette réaction, sachant que dans le mélange initial les ions fer II sont en excès.
- 2) Une fois le dégagement gazeux est terminé, on dose les ions fer II restants par une solution (S_2) de permanganate de potassium $(KMnO_4)$ de molarité $C_2 = 0.05$ M. L'équivalence est obtenue pour un volume $V_2 = 12$ mL versé de la solution (S_2) .
 - a) Ecrire les demi-équations électroniques puis l'équation bilan de la réaction. Déduire les couples redox mis en jeu.
- b) Calculer la quantité de matière des ions fer II dosés au cours de cette réaction.
- 3) Calculer la concentration C_0 de la solution (S_0) .

