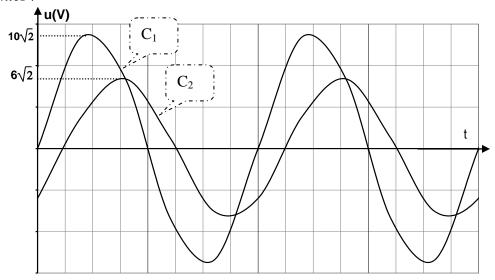
<u>Série de Physique</u> <u>Niveau : 4^{ième}.Sc ex. +ScT. +M</u> <u>Oscillateur RLC forcé</u>

Exercice n°1:


Un oscillateur électrique est constitué des dipôles suivants associés en série :

Un résistor de résistance $R=24\Omega$ une bobine d'inductance L=0,8H et de résistance interne r, un condensateur de capacité C. L'ensemble est alimenté par un générateur basse fréquence délivrant une tension sinusoïdale $u(t)=Um \sin 2\pi Nt$ tel que $Um=10\sqrt{2V}$ et de fréquence N est réglable.

L'intensité instantanée de courant est $i(t)=I\sqrt{2\sin(2\pi Nt+\varphi i)}$.

Un oscilloscope permet de visualiser les tensions u(t) sur la voie(Y1) et $u_R(t)$ sur la voie(Y2).

- 1) Représenter le circuit et faire les branchements nécessaires à l'oscilloscope.
- **2)** Quand la fréquence N est ajustée à la valeur **200Hz** on observe sur l'écran de l'oscilloscope les deux courbes suivantes :

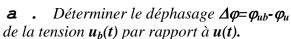
- a. Montrer que la courbe C_1 correspond à u(t). Le circuit est-il inductif, capacitif ou résistif?
- b. Déterminer les valeurs de I et φi .
- **3)** Etablir l'équation différentielle relative à i(t).
- **4)** La construction de Fresnel correspondante à la fréquence N=202 Hz est donnée par la figure ci-contre ou l'échelle adoptée est $1cm=\sqrt{2V}$ et les vecteurs \overrightarrow{AD} est associé à u(t); \overrightarrow{AB} est associé à $u_R(t)$; \overrightarrow{BD} est associé à l'ensemble de la tension aux bornes de $\{bobine, condensateur\}$
 - Déduire de cette construction de Fresnel :
 - ♦ la valeur de **r**.
 - ◆ la capacité C.
- **5)** On agit sur la fréquence N du GBF tout en gardant Um constante de manière à rendre u(t) et $u_R(t)$ en phases.
 - **a** . Montrer que le circuit est le siège de la résonance d'intensité.
 - **b** . Préciser en le justifiant si l'on doit augmenter ou diminuer la valeur de N pour atteindre cet objectif.

Calculer la valeur de la fréquence à la résonance d'intensité.

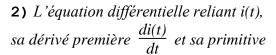
c. Ecrire dans ce cas u(t), $u_R(t)$, $u_C(t)$ et $u_b(t)$.

Axe des phases D 7,1 cm 7 cm

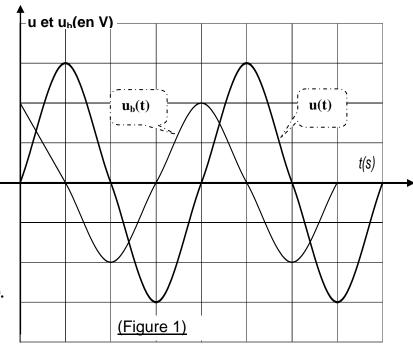
Exercice n°2 :


Un générateur de basse fréquence (GBF), délivrant une tension sinusoïdale u(t)=30 sin $(2\pi Nt)$, de valeur efficace U constante et de fréquence N réglable, alimente un circuit électrique comportant les dipôles suivants, montés en série :

- Un résistor de résistance $R=32\Omega$
- une bobine d'inductance L et de résistance interne r.
- un condensateur de capacité C.


Profit Trayia Nabili

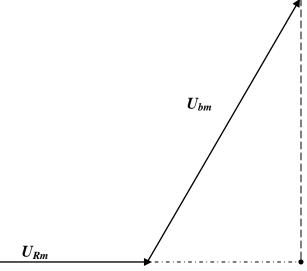
1) Pour une fréquence N de la tension d'alimentation on obtient sur l'écran de l'oscilloscope les deux courbes de la figure-1- correspondant aux tensions u(t) et la tension $u_b(t)$ aux bornes de la bobine.



- **b** . Déterminer les valeurs maximales U_{bm} de la tension $u_b(t)$ sachant que la sensibilité est la même sur les deux entrées et égale à : 10V/div.
 - Donner l'expression de $u_b(t)$.

$$\int i(t)dt \, s' \acute{e}crit : \mathbf{R}i(t) + L \frac{di(t)}{dt} + \frac{1}{C} \int i(t)dt = \mathbf{u}(t).$$
Nous givens tracé la construction de France.

Nous avons tracé la construction de Fresnel relatives aux valeurs maximales des tensions.


a . Tracer les vecteurs de Fresnel relatives aux tensions r.i(t) et $L \frac{di(t)}{dt}$

Déterminer à partir de cette construction :

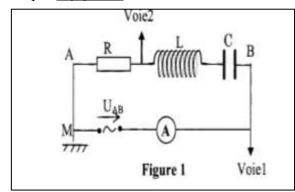
- La valeur maximale I_m de l'intensité du courant i(t).
- ♦ La résistance r de la bobine.
- ♦ *L'inductance L de la bobine*.
- Le déphasage (φ_{ub} - φ_i) entre la tension ub(t) et l'intensité i(t).
- **b** . Montrer que i(t) est en avance de phase de $\frac{\pi}{6}$ sur la tension u(t). En déduire la nature du circuit.
- c . Compléter la construction en traçant, dans l'ordre suivant et selon l'échelle indiquée, les vecteurs de Fresnel représentant u(t) et $\frac{1}{C}\int i(t)dt$.

On donne:
$$1cm \longrightarrow 2.5V$$

Déduire la valeur de C.

- 3) Pour une fréquence N_0 , la puissance moyenne consommée prend une valeur maximale P_0 .
- **a** . Préciser, en le justifiant l'état d'oscillation du circuit.
- \boldsymbol{b} . Calculer N_0 , I_0 puis P_0 .
- \boldsymbol{c} . Donner les expressions de $\boldsymbol{i}(t)$ et $\boldsymbol{u_c}(t)$.
- **d** . Calculer le coefficient de surtension du circuit.

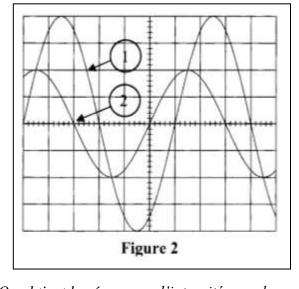
Exercice n°3:


Un générateur impose une tension alternative sinusoïdale, telle que $u(t)=U_m \sin(\alpha t)$, au dipôle AB, constitué d'un condensateur de capacité $C=4.10^{-6}F$, d'une bobine d'inductance L de résistance négligeable et d'un résistor de résistance R, tous montés en série.

L'ampèremètre de résistance négligeable, indique une intensité de valeur **I=14mA**.

On branche un oscilloscope bicourbe (voie 1 et voie 2) comme l'indique <u>la figure 1</u>.

<u>Pour les 2 voies</u> : le balayage horizontal est de : 10⁻³s/div La sensibilité verticale est de : 1V/div

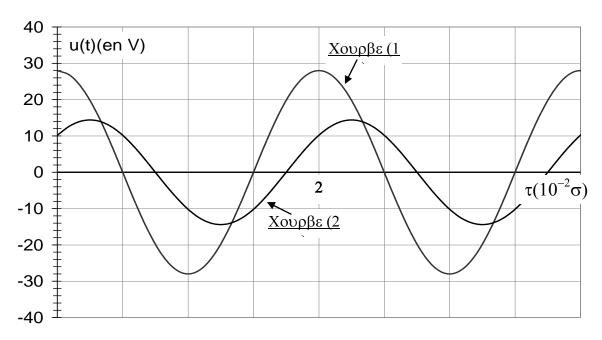

On obtient l'oscillogramme de la <u>figure 2</u>.

- 1) Identifier les deux courbes observées sur l'oscillogramme. Justifier.
- 2) Déduire des observations expérimentales :
- \pmb{a} . La pulsation $\pmb{\omega}$ de la tension imposé par le générateur au dipôle AB.
- b. Le déphasage entre l'intensité i(t) et la tension $u_{AB}(t)$, ainsi que la nature du circuit (résistif, capacitif ou inductif).
 - ${m c}$. L'impédance ${m Z}$ du dipôle ${m A}{m B}$.
 - **d** . La résistance **R** du résistor.
- **3)** On donne l'équation différentielle du circuit :

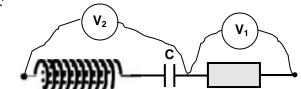
$$Ri(t) + L \frac{di(t)}{dt} + \frac{1}{C} \int i(t)dt = u(t).$$

En utilisant la représentation de Fresnel, déterminer la valeur de l'inductance L. (On donne : $1V \longrightarrow 2cm$)

- **4)** On modifie la pulsation de la tension délivrée par le générateur. On obtient la résonance d'intensité pour la pulsation ω_0 =650 π rad.s⁻¹.
 - ${\it a}$. Quelle observation à l'oscilloscope conduit à cette affirmation ?
 - \boldsymbol{b} . Que représente cette pulsation $\boldsymbol{\omega_0}$ pour le dipôle \boldsymbol{RLC} ?
 - c . Quelle est la relation entre la pulsation ω_0 et les caractéristiques du dipôle ?
 - \emph{d} . Retrouver la valeur de l'inductance \emph{L} de la bobine.
 - e. Déterminer l'intensité efficace I_0 correspondante et la puissance moyenne P_0 consommée par le circuit.
 - f. Dans les conditions précédentes : Montrer que la tension efficace aux bornes du condensateur peut s'écrire $U_C = \frac{U}{R} \sqrt{\frac{L}{C}}$


Calculer la tension efficace U_C aux bornes du condensateur. En déduire le facteur de qualité $oldsymbol{Q}$.

Exercice n°4:


Un résistor de résistance $R=20\Omega$ et un condensateur de capacité $C=50\mu F$ sont branchés avec un dipôle D inconnu. L'ensemble est alimenté par une tension alternative $u(t)=U\sqrt{2}\sin{(\omega t+\varphi_u)}$.

La puissance moyenne consommée par le dipôle **D** est **P=2watt.**

Sur l'oscilloscope bicourbe on visualise $u_R(t)$ et u(t) on observe les courbes de la figure ci après :

- 1) a-Justifier laquelle des courbes est uR(t).
 - b- Quelle est la nature du dipôle **D** ? Justifier.
 - c-Déterminer les grandeurs caractéristiques de dipôle **D**.
- 2) a-Donner les expressions de u(t) et i(t).
 - b- Faire la construction de Fresnel correspondante.
 - c-Donner l'expression de $u_D(t)$.
- **3)** On remplace le dipôle D par une bobine d'inductance L variable et de résistance négligeable et on réalise le circuit suivant :

- a- Pour une valeur L_1 de L les deux voltmètres indiquent la même valeur :
 - ◆ Préciser la nature du circuit. Calculer L₁.
 - Qu'observe-t-on dans ce cas sur l'écran de l'oscilloscope?
- b- Pour une valeur de $L_2(L_2>L_1)$ le voltmètre V_2 indique 0V.
 - Déterminer L_2
 - Qu'observe t Qu'observe-t-on dans ce cas sur l'écran de l'oscilloscope?

Profit Trayla Nabill