Date: 11/11/2011	Devoir de contrôle N°1	Lycée secondaire de Téboulba		
Durée: 2 heures	Sciences physiques	Niveau: 3ème Sc. expérimentale		

· Le sujet comporte deux exercices de physique et deux exercices de chimie.

- On exige une expression littérale avant chaque application numérique.
 - Chaque réponse doit être justifiée.
 - L'annexe est à rendre avec la copie

Chimie: (9 points)

Exercice n°1:

On dispose de 4 récipients A, B, C et D. A et B contiennent 50 mL d'acide chlorhydrique (HCl) de concentration molaire 0,5 M. C et D contiennent 30 mL d'une solution de sulfate de cuivre II (CuSO₄) 0,5 M. On introduit dans A du zinc en excès, dans B du cuivre en excès, dans C de l'aluminium en excès et dans D de l'argent en excès.

- 1- Prévoir en le justifiant, ce qui se passe dans chaque récipient.
- 2- Ecrire les équations bilans dans le cas où il ya des réactions chimiques.
- **3-** Calculer les masses des métaux attaquées au cours de ces expériences ainsi que le volume de gaz dégagé.

On donne:

- $M_{Cu} = 63.5 \text{ g.mol}^{-1}$; $M_{Ag} = 108 \text{ g.mol}^{-1}$; $M_{A\ell} = 27 \text{ g.mol}^{-1}$; $M_{Zn} = 65.4 \text{ g.mol}^{-1}$.
- \triangleright Le volume molaire des gaz : $V_m=24$ L.mol⁻¹.
- > La classification électrochimique:

Aℓ	Zn	H_2	Cu	Ag	Pouvoir réducteur
					décroissant

Exercice n °2:

- 1- Définir un couple oxydant/réducteur.
- **2-** On donne les entités chimiques suivantes : $C\ell^-$; $C\ell_2$; MnO_4^- ; Mn^{2+} ; H_3O^+ et H_2O .
 - **a-** A l'aide du nombre d'oxydation, donner le symbole des couples qui peuvent former un couple oxydant/réducteur.
 - **b-** Ecrire l'équation formelle de chaque couple oxydant/réducteur.
- **3-** On mélange, en présence d'un excès d'une solution d'acide sulfurique, une solution (S_1) de permanganate de potassium $KMnO_4$ de concentration $C_1=10^{-1}$ mol. L^{-1} et de volume $V_1=10$ mL, avec une solution (S_2) de chlorure de sodium $NaC\ell$ de concentration $C_2=0,2$ mol. L^{-1} . La couleur violette de la solution (S_1) disparaît et du dichlore $C\ell_2$ se dégage, suite à une réaction redox considérée totale.
 - a- Préciser le réactif oxydant et le réactif réducteur.
 - **b-** Déduire l'équation de la réaction redox qui se produit.
 - **c-** Cette réaction est-elle une réaction redox par voie sèche ou humide ? justifier.
- **4-** L'ion permanganate MnO₄ est le réactif limitant.
 - **a-** Calculer le volume de dichlore qui se dégage à la fin de la réaction redox. On donne le volume molaire des gaz : $V_m=24 \text{ L.mol}^{-1}$.
 - **b-** Calculer le volume V_2 , de la solution (S_2) , nécessaire pour faire disparaître toute la quantité initiale des ions MnO_4^- .

Barème

1 1

1,5

0,5

0,3

1,5

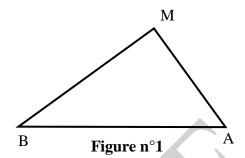
1

0,5

0,5

0,5

0,5


0,5

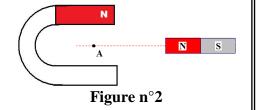
Physique: (11 points)

Exercice n°1:

Dans une région de l'espace, on place deux charges ponctuelles q_A = 2.10^{-9} C et q_B = -4.10^{-9} C, respectivement aux points A et B distant de d= 5cm comme l'indique la figure n°1. Soit un point M de cet espace tel que les deux droites (AM) et (BM) sont perpendiculaires.

On donne : la constante électrique $K=9.10^9$ N.C⁻².m² ; AM=3 cm ; BM=4 cm.

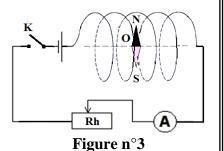
1-


- **a-** Représenter sur la figure n°1 quelques lignes de champ crées par les deux charges q_A et q_B en indiquant leurs sens.
- **b-** Calculer l'intensité du vecteur champ électrostatique $\overline{E_A}$ crée par q_A au point M.
- **c-** Calculer l'intensité du vecteur champ électrostatique $\overrightarrow{E_B}$ crée par q_B au point M.
- **d-** Déduire la valeur du champ électrostatique résultant $\|\overline{E}\|$ au point M.
- e- En respectant l'échelle : 10^4 N.C⁻¹ \longrightarrow 1 cm, représenter le vecteur champ électrostatique résultant \overline{E} , sur la figure n°1.

2-

- **a-** Calculer la valeur de la force $\| \overrightarrow{F_{A/B}} \|$ exercée par la charge q_A sur la charge q_B .
- **b-** Donner les caractéristiques de cette force.
- **c-** En respectant l'échelle : 10^{-5} N \longrightarrow 1 cm, représenter sur la figure n°1 cette force électrostatique.

Exercice n°2: Les parties I et II sont indépendantes.


- I- Deux aimants sont disposés dans un même plan comme l'indique la figure n°2 ci-contre. En un point A, le champ magnétique $\overrightarrow{B_1}$ dû à un aimant droit a pour valeur 3. 10^{-3} T et le champ magnétique $\overrightarrow{B_2}$ crée par l'aimant en U a pour valeur 2.10^{-3} T.
 - **a-** Représenter en A le champ magnétique B_1 ainsi que le champ magnétique B_2 en respectant l'échelle : 10^{-3} T \longrightarrow 1 cm.

- **b-** Quelle est la direction prise par une aiguille aimantée placée en A. Représenter l'aiguille aimantée.
- c- Calculer la valeur du champ magnétique B résultant.
- **d-** En déduire la valeur de l'angle α que fera l'aiguille placée en A avec B_1 .
- II- Une aiguille aimantée, mobile autour d'un axe vertical est placée au centre d'un solénoïde dont l'axe est perpendiculaire au méridien magnétique (figure n°3).

1- K ouvert:

- **a-** Représenter la composante horizontale du champ magnétique terrestre \overrightarrow{B}_H . (figure n°3).
- b- Quelle est l'orientation de l'aiguille aimantée.

0,25 0,25

0,25

0,5

0,5

0,5

0,25

0.5

0,75

0,25

0,5

0,25

0,5

0,5

2- K fermé : l'aiguille aimantée dévie d'un angle α , pour une intensité de courant I= 0,2 A. a- Représenter le sens du courant électrique dans le solénoïde (figure n°4 de la page annexe) 0.25 **b-** Indiquer la nature des faces du solénoïde. 0,25 0,25 **c-** Préciser la nature magnétique à l'intérieur du solénoïde. **d-** Représenter le vecteur champ magnétique $\overrightarrow{B_S}$ créé par le courant électrique au centre O 0,25 du solénoïde. 3- Le solénoïde est de longueur L=30 cm et comporte N= 150 spires. On donne la perméabilité du milieu $\mu_0 = 12.5 \ 10^{-7} \ \text{S.I.}$ **a-** Donner les caractéristiques du vecteur champ magnétique $\overrightarrow{B_S}$. **b-** Représenter l'angle α et déterminer sa valeur. On donne $\|\overrightarrow{B_H}\| = 2.10^{-5} \text{ T}$. 1 0,5 4-0,25 a- Pour la même intensité I = 0,2 A, on augmente le nombre de spires par unité de longueur n, comment varie la valeur du champ magnétique | B's |, à l'intérieur du solénoïde? **b-** A l'aide du rhéostat on <u>double</u> l'intensité du courant I. • Donner la valeur du champ magnétique \mathbb{I} \overrightarrow{B}_{S} \mathbb{I} . 0,25 • Que peut- on dire de la déviation de l'aiguille ? Justifier graphiquement. 0,25 5- On tourne le solénoïde dans le sens des aiguilles d'une montre de façon que son axe soit confondu avec B_H (figure n°5). Pour la même intensité du courant I = 0,2 A. 0,25 a- Quel est l'angle β de déviation de l'aiguille aimantée? b- Représenter sur la figure n°6 de la page annexe 1 B_H , B_S et B_R résultant. Puis donner la valeur de B_R . 6-0,5 a- Calculer la valeur de l'intensité du courant électrique I₀ nécessaire pour annuler le champ magnétique B_R dans le solénoïde. Figure n°5 0,25 b- La position de l'aiguille aimantée est alors indifférente. Préciser pourquoi ?

Date: 11/11/2011	Devoir de contrôle N°1	Lycée secondaire de Téboulba				
Durée: 2 heures	Sciences physiques	Niveau : 3ème Sc. expérimentale				
Professeur: Sana NACEF						
Nom L Prénom :		N°:				

Annexe à rendre avec la copie

Figure n°1:

A

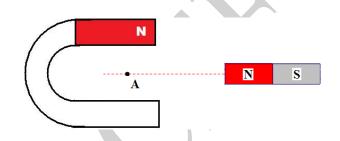


Figure n°3:

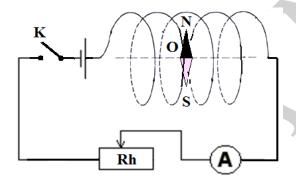


Figure n°4:

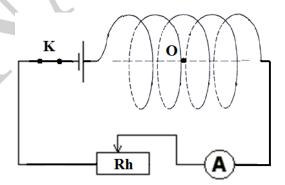
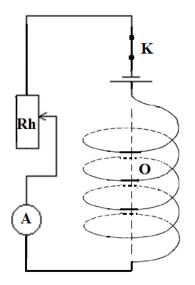



Figure n°5:

