D**EVO**IR DE SYNTHESE

Exercice 1:(4 points)

Cocher les bonnes réponses			
1)Soit $I = \int_{1}^{2} (1 + \frac{1}{x}) dx$	a)I = 1 + ln2	$b)I = 3 + \ln 2$	c)I = -1 + ln2
2)Soit J = $\int_{e^{-1}}^{1} \ln x \ dx$	a)J est positif	b)J est négatif	c)J est nul
3)Soit f une fonction continue sur IR et telle que $\int_{-1}^{2} f(x)dx = 3$ et $\int_{-1}^{0} f(x)dx = -3$ soit $K = \int_{0}^{2} f(x)dx$	a)K = 6	b)K = 0	c)K = - 6
4)Soit le graphe G suivant	a)G admet un cycle eulérien	b)G admet une chaine eulérienne	c)G n'admet ni chaine ni cycle eulérien
C D E	d)le nombre chromatique de G est entre 4 et 5	e)le nombre chromatique de G est entre 1 et 3	f)le nombre chromatique de G égal à 5
5)Soit T le graphe probabiliste suivant 0.7 0.3 0.8	$a)M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	b)M = $\begin{pmatrix} 0.7 & 0.3 \\ 0.2 & 0.8 \end{pmatrix}$	c)M = $\begin{pmatrix} 0.7 & 0.3 \\ 0.8 & 0.2 \end{pmatrix}$
Soit M la matrice de transition de T et p l'état stable	$d)p = (0.4 \ 0.6)$	$e)p = (0.5 \ 0.5)$	$f)p = (0.6 \ 0.4)$
6)La courbe C est celle d'une fonction f définie sur IR*+	a)Le tableau de variation de f est $ \begin{array}{c cccc} x & 0 & +\infty \\ \hline f'(x) & + \\ \hline f(x) & & 1 \end{array} $	b) $ \begin{array}{c cccc} x & 0 & +\infty \\ f'(x) & - & \\ f(x) & +\infty & 1 \end{array} $	c) $ \begin{array}{c cccc} x & 0 & +\infty \\ f'(x) & + & \\ f(x) & +\infty \end{array} $

Exercice 2:(5 points)

Un nourrisson est pesé quotidiennement durant le 1^{er} mois de sa naissance.

Dans le tableau suivant X désigne le nombre de jours après la naissance du nourrisson et Y le poids en kg

X (en jours)	4	6	9	14	17	19	22
Y (en kg)	3.6	3.75	3.8	3.9	4	4.25	4.5

- 1)a)Représenter, dans un repère orthogonal, le nuage de points associé à la série (X,Y)
 - b)Un ajustement affine de cette série est-il justifié?
- 2) Soit G₁ le point moyen des 4 premiers points du nuage et G₂ le point moyen des derniers points du nuage a)Déterminer les coordonnées de s points G₁ et G₂
 - b)Déterminer une équation de la droite de Mayer (G₁ G₂)
- 3)a)Quelle pourrait être une estimation du poids du nourrisson après 30 jours de sa naissance?
 - b)Quel pourrait être l'âge du nourrisson sachant que son poids est 4.6 kg?

Exercice 3: (5 points)

Un livreur d'une société de vente à domicile doit livrer, à partir de A_1 , 5 clients qu'on note A_2 , A_3 , A_4 , A_5 , A_6 .

Soit G le graphe représentant le réseau routier

On donne la matrice M associée au graphe G

$$M = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \qquad \text{On donne aussi}$$

$$M^2 = \begin{pmatrix} 0 & 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \qquad M^3 = \begin{pmatrix} 0 & 0 & 1 & 2 & 0 & 2 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 2 & 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 1 & 0 & 1 \\ 1 & 0 & 0 & 2 & 1 & 1 \\ 0 & 2 & 1 & 0 & 1 & 0 \end{pmatrix} \qquad M^4 = \begin{pmatrix} 2 & 0 & 0 & 3 & 2 & 1 \\ 1 & 2 & 1 & 0 & 2 & 0 \\ 0 & 3 & 4 & 1 & 1 & 1 \\ 1 & 0 & 1 & 4 & 1 & 3 \\ 2 & 2 & 1 & 1 & 3 & 0 \\ 0 & 1 & 3 & 1 & 0 & 1 \end{pmatrix}$$

$$M^{3} = \begin{pmatrix} 0 & 0 & 1 & 2 & 0 & 2 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 2 & 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 1 & 0 & 1 \\ 1 & 0 & 0 & 2 & 1 & 1 \\ 0 & 2 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$M^4 = \begin{pmatrix} 2 & 0 & 0 & 3 & 2 & 1 \\ 1 & 2 & 1 & 0 & 2 & 0 \\ 0 & 3 & 4 & 1 & 1 & 1 \\ 1 & 0 & 1 & 4 & 1 & 3 \\ 2 & 2 & 1 & 1 & 3 & 0 \\ 0 & 1 & 3 & 1 & 0 & 1 \end{pmatrix}$$

- 1)Justifier que ce graphe est orienté
- 2) A partir de M , déterminer $d^+(A_1)$ et $d^-(A_1)$
- 3) Justifier que le livreur peut livrer, à partir de A_1 , les 5 clients et en passant une et une seule fois par tous les rues
- 4)a)Déterminer le nombre de trajets en 3 étapes reliant A₃ à A₂
 - b)Déterminer le nombre de trajets en 4 étapes reliant A₆ à A₃
- 5)Déterminer la distance entre A₁ et A₆
- 6)Représenter ce graphe

Exercice 4 (6 points)

Soit la fonction f définie sur IR par $f(x) = 3 - x e^{1-x}$ On note C sa représentation graphique dans un repère orthonormé

- 1)a)Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$ et interpréter graphiquement le résultat obtenu b)Vérifier que $f(x) = 3 \frac{e}{\frac{e^x}{x}}$ et déduire $\lim_{x \to +\infty} f(x)$. interpréter le résultat obtenu
- 2)a)Montrer que f'(x) = (x-1) e^{1-x} et dresser le tableau de variation de f b)Tracer C
- 3) A l'aide d'une intégration par parties, calculer l'aire A de la partie du plan limité par C, D: y=3, D': x = 0 et D'': x = 3

Donner une valeur approchée de $A \ a \ 10^{-2} \ près$.

- 4)La fonction f est le coût en milliers de dinars, de fabrication de x centaines d'objets 0 < x < 4
- a)Déterminer le coût de fabrication de 300 objets
- b)Déterminer le nombre d'objets à fabriquer pour que le coût soit minimal
- c)Déterminer la valeur moyenne de f sur [0,3]

Correction:

Exercice1:

1	2	3	4	5	6
a	b	a	a - d	b - d	b

Exercice 2:

1)-\				 										
1)a)	_	, ¥.	`											
, ,	4	• "												
		_												
	4	, .5-												
	4	, -3-									+			
	4	, 1-												
										-+-				
	3	, 9-												
				_		-+-								
	3	, 7-												
	3	, 5												
		0		 1	8	3	1	2	1	6	2	0	2	4x
					•	•	_	•				_	•	_

b)le nuage de points est allongé donc on peut faire un ajustement affine de cette série

b)
$$(G_1G_2)$$
: y = 0.04x+3.48

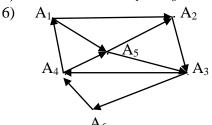
$$3)a)x=30$$
, $y=0.04.30+3.48=4.68$

b)
$$y=4.6 \text{ eq } 0.04x+3.48=4.6$$

Exercice3:

1)La matrice associée à G n'est symétrique par rapport à sa diagonale donc G n'est pas orienté

 $(2)d^{+}(A_1) = 1a$ somme des termes de la première ligne de M = 2


 $d(A_1) = la$ somme des termes de la première colonnes de M =1

3)

	A_1	A_2	A_3	A_4	A_5	A_6
d^{+}	2	1	2	2	2	1
ď	1	2	2	2	2	1

pour tous les sommets de G ,sauf pour A_1 et A_2 , on a $d+=d^-$, $d^+(A_1)=d^-(A_1)+1$ et $d^-(A_2)=d^-(A_2)+1$ donc il existe une chaine orientée eulérienne partant de A1

4)a)le nombre de trajets en 3 étapes reliant A_3 à A_2 est le terme a_{32} de M^3 , il y a donc 2 trajets b)le nombre de trajets en 4 étapes reliant A₆ à A₃ est le terme a₆₃ de M⁴, il y a donc 3 trajets 5) la distance entre A_1 et A_6 est le plus petit n tel que le terme a_{16} de M^n soit non nul donc n=3

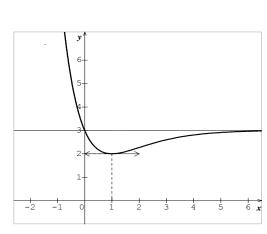
Exercice 4:

1)a)

$$\lim_{x \to -\infty} f(x) = +\infty \quad \text{et} \quad \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{3}{x} - e^{1-x} = -\infty$$

$$\lim_{x \to -\infty} f(x) = +\infty \quad \text{et} \quad \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{3}{x} - e^{1-x} = -\infty.$$
C admet une branche parabolique au voisinage de - \infty de direction l'axe des ordonnées
b)
$$f(x) = 3 - x \text{ e } e^{-x} = 3 - e^{\frac{x}{e^x}} = 3 - \frac{e}{\frac{e^x}{x}} \quad d'ou \qquad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 3 - \frac{e}{\frac{e^x}{x}} = 3$$

La droite D:y = 3 est une asymptote à C au voisinage de $+\infty$


2)a)b)

X	-∞	1		+∞			
f '(x)	1	0	+				
f(x)	7			S.			
	2						

$$3)A = \int_0^3 (3 - f(x)) dx = \int_0^3 x e^{1-x} dx = [-xe^{1-x}]_0^3 - \int_0^3 -e^{1-x} dx$$
$$= [-xe^{1-x}]_0^3 - [e^{1-x}]_0^3 = e - 4e^{-2}$$

4)a)pour x = 3, f(3) = 2.594 milliers de dinars soit 2594D

b)le coût est minimal est pour
$$x = 1$$
 soit 100 objets
c) $\bar{f} = \frac{1}{3} \int_0^3 f(x) dx = \frac{1}{3} (\int_0^3 3 dx - \int_0^3 x e^{1-x} dx) = \frac{1}{3} (9 - e + 4e^{-2})$

