

Cínématíque de translatíon 1

www.physiqueweb.p1.fr

Exercice 1:

 \mathbf{I} – A l'origine des temps un mobile passe par l'origine d'un repère (o. \dot{i} , \dot{j})

Son vecteur vitesse à pour expression $\vec{v} = 2\vec{i} + (8t - 12)\vec{j}$

- 1° / Déterminer l'expression de son vecteur accélération et de son vecteur position
- 2°/ Déterminer l'équation de la trajectoire .
- 3 °/ Calculer à t = 1.5 s les composantes normales et tangentielle de l'accélération ainsi que le rayon de courbure.
- II- Un mobile M décrit une trajectoire rectiligne muni d'un repère R (o. \dot{i} ,)

son vecteur accélération est constant pendant toute la durée du mouvement qui est fixé à $t_{\text{F}} = 5 \text{ s}$

A l'instant t=05 s, le mobile passe d'un point M_0 d'abscisse $x_0=0.5 \text{ m}$ avec une vitesse $v_0=-1 \text{ ms}^{-1}$. Puis il passe au point M_1 d'abscisse $x_1=5 \text{ m}$ avec $v_1=4.7 \text{ m}$ S⁻¹ 1° / Calculer l'accélération a du mobile .

- $2^{\circ}\!/$ Calculer la date t1 à la quelle le mobile passe au point M_1 .
- 3°/ Déterminer la loi horaire du mouvement
- 4°/a) A quel instant le mobil rebrousse t- il chemin ?

b)En déduire les différentes phases du mouvement.

Exercice 2:

On étudie le mouvement d'un mobile M dans un repère orthonormé $(0,\vec{i},\vec{j})$. Le vecteur position du mobile, dans ce repère est donné par :

$$\vec{OM}(t) = (2t) \cdot \vec{i} + (5t^2 + 2) \cdot \vec{j}$$
.

- 1°) Déterminer, dans le repère $(0, \vec{i}, \vec{j})$, l'équation cartésienne de la trajectoire du mobile.
- 2°) Déterminer les expressions des vecteurs vitesse $\vec{v}(t)$ et accélération $\vec{a}(t)$ du mobile. Que peut-on dire du vecteur accélération.
- 3°) Soit M_o la position occupée par le mobile à l'origine des dates.
 - a- Faire un schéma et représenter Mo
 - Beprésenter, à l'instant de passage par Mo les vecteurs vitesses et accélération. Déduire la valeur de la composante normale et celle de la composante tangentielle de l'accélération à cet instant.
 - c- Calculer le rayon de courbure de la trajectoire du mobile au point M_o.

Exercice 3

On considère un mobile en mouvement par rapport au repère orthonormé R (o, \vec{i} , \vec{j}). Son vecteur position a pour expression $\overrightarrow{OM} = 2.t. \vec{i} + (4t^2 - 4t). \vec{j}$

- 1°) a- Donner les lois horaires du mouvement.
 - b- Montrer que l'équation de la trajectoire s'écrit : $y = x^2 2x$.
 - c-Reproduire et compléter le tableau suivant :

in protect for the freed out which					
	t(s)	0	0,5		2
	x(m)	0	1	2	
	y(m)	0	-1	0	

- d-Tracer la portion de courbe d'équation $y = x^2 2x$ pour l'intervalle de temps [0,2s].
- 2°) Exprimer, dans le repère R :
- a- le vecteur vitesse \vec{V}
- b- le vecteur accélération \vec{a} .
- 3°) a- A quelle date le vecteur vitesse est $\vec{V}=2.\vec{i}$. En déduire ses caractéristiques à cette date.
 - b- A la date t = 0.5 s, placer sur la courbe :
 - La position du mobile M ; Le vecteur vitesse ; Le vecteur accélération.
- 4°) a- Montrer qu'à t = 0,5 s, la composante tangentielle de l'accélération est nulle.
 - b. Sachant à l'instant t = 0.5s, $\|\vec{a}\| = 8 \text{ m.s}^{-2}$. Déterminer le rayon de courbure de la trajectoire.

Exercice 4

Dans un repère orthonormé (O , \vec{i} , \vec{j}) , un mobile M considéré ponctuel a pour vecteur position $\overrightarrow{OM} = (5t)\vec{i} + (-2,5t^2 + 2,5)\vec{j}$

- 1°) Déterminer la position M_0 du mobile à $t_0 = 0$ s . Préciser alors l'origine des dates adoptés .
- 2°) Déterminer l'équation cartésienne de la trajectoire de ce mobile dans ce repère.
- 3°) A quel instant t₃, le mobile passera –t-il par le point M₃ d'ordonnée y₃ = 0 ? Déduire l'abscisse de M₃.
- 4°) Représenter la trajectoire du mobile pour $t \in [0; 1,4]s$.
- 5°) a-Déduire dans le repère (O, \vec{i} , \vec{j}), les expressions des vecteurs vitesses et accélération du mobile en fonction du temps.
- b-Représenter les vecteurs accélération \vec{a} et vitesses (\vec{v}_0 et \vec{v}_3), respectivement aux points M_0 et M_3 .
- 6°) Soit α la valeur de l'angle que fait \vec{V}_3 avec \vec{a} . Montrer que $\alpha = 45^\circ$.
- 7°) a- Déterminer les composantes normale et tangentielle de l'accélération .
- b- Déduire le rayon de courbure en M3.

Dans un repère orthonormé R(O, \hat{t} , \hat{j}), un mobile considéré ponctuel, est lancé du sol à partir du point O à une date t = 0 s. Son vecteur vitesse instantané est $\vec{v} = 8 \vec{i} + (-10t + 6) \vec{j}$.

- $1^{\circ})\ Donner\ ,\ en\ fonction\ du\ temps\ ,\ l'expression\ de\ la\ valeur\ du\ vecteur\ vitesse\ du\ mobile\ .\ La\ calculer\ à\ la\ date\ t=0\ s\ .$
- 2°) Déterminer son vecteur accélération \vec{a} .
- 3°) Montrer que le vecteur position du mobile s'exprime par : $\overrightarrow{OM}(t) = 8t\overrightarrow{i} + (-5t^2 + 6t)\overrightarrow{i}$
- 4°) Représenter l'allure de la trajectoire du mobile .
- 5°) a-Déterminer la valeur de l'accélération normale à l'instant $t_2 = 0.6$ s
- b-Déduire le rayon de courbure de la trajectoire à cette date.

Exercice 6

Dans le repère d'espace (0, i, j), le vecteur espace d'un mobile est : $0 \vec{M} = 3t\vec{i} + (t^2 - 2t)\vec{j}$

- 1°) Etablir l'équation cartésienne y = f(x) de la trajectoire.
- 2°) Exprimer le vecteur vitesse \vec{v} dans le repère (0,i,j) ainsi que le vecteur accélération \vec{a} .
- 3°) a Déterminer les caractéristiques du vecteur vitesse \vec{V}_1 à la date $t_1=1$ s.
 - b Représenter le vecteur vitesse \vec{V}_1 et le vecteur accélération \vec{a} à l'instant de date t_1 .
 - c En déduire la valeur de l'accélération tangentielle \vec{a}_T et celle de l'accélération normale \vec{a}_N ainsi que le rayon de courbure R de la trajectoire à l'instant de date t₁.

Exercice 7

I – A l'origine des temps un mobile passe par l'origine d'un repère (o. \dot{i} , \dot{j})

Son vecteur vitesse à pour expression $\vec{v} = 2\vec{i} + (8t - 12)\vec{j}$

- 1°) Déterminer l'expression de son vecteur accélération et de son vecteur position
- 2°) Déterminer l'équation de la trajectoire .
- 3°) Calculer à t=1.5 s les composantes normales et tangentielle de l'accélération ainsi que le rayon de courbure .

II- Un mobile M décrit une trajectoire rectiligne muni d'un repère R (o. i,) son vecteur accélération est constant pendant toute la durée du mouvement qui est fixé à $t_F = 5 \ s$ A l'instant $t = 05 \ s$, le mobile passe d'un point M_0 d'abscisse $x_0 = 0.5 \ m$ avec une vitesse $v_0 = -1 \text{ ms}^{-1}$. Puis il passe au point M_1 d'abscisse $x_1 = 5 \text{ m avec } v_1 = 4.7 \text{ m S}^{-1}$

- 1°) Calculer l'accélération a du mobile .
- 2°) Calculer la date t1 à la quelle le mobile passe au point M_1 .
- 3°) Déterminer la loi horaire du mouvement
- 4°) a- A quel instant le mobil rebrousse t- il chemin ?
 - b- En déduire les différentes phases du mouvement.

Dans le repère d'espace (0, i, j), le vecteur espace d'un mobile est : $0 \vec{M} = 3t \vec{i} + (t^2 - 2t) \vec{j}$

- 1°) Etablir l'équation cartésienne y = f(x) de la trajectoire.
- 2°) Exprimer le vecteur vitesse \vec{v} dans le repère (0,i,j) ainsi que le vecteur accélération \vec{a} .
- 3°) a Déterminer les caractéristiques du vecteur vitesse \vec{V}_1 à la date $t_1 = 1$ s.
 - b Représenter le vecteur vitesse \vec{V}_1 et le vecteur accélération \vec{a} à l'instant de date t_1 .
 - c En déduire la valeur de l'accélération tangentielle \vec{a}_T et celle de l'accélération normale \vec{a}_N ainsi que le rayon de courbure R de la trajectoire à l'instant de date t₁.

Une automobile est arrêtée à un feu rouge au point A. Quand le feu passe au vert l'automobiliste accélère pendant 8 s avec une accélération de 2 m.s. , jusqu'il arrive au point B avec une vitesse V_1 .

Sens du mouvement En choisissant un repère orienté vers le sens du mouvement du mobile et pour origine des abscisses le point A et pour origine des temps l'instant où l'automobiliste

quitte le feu vert au point A .

- 1°) a Rappeler l'expression de la vitesse $\,V\,$ en fonction de l'accélération $\,a\,$, le temps $\,t\,$ et la vitesse initiale V_0 (dans le cas d'un mouvement uniformément varié).
 - b Calculer la vitesse $\,V_1\,$ de l'automobile au point $\,B\,$ (à $\,t=8\,s\,)\,$.
- 2°) a Rappeler la relation entre V et x indépendante du temps
 - **b** Calculer la distance AB . (On prend $\|V_1\| = 16 \text{ m.s}^{-1}$).
- 3°) a Rappeler l'équation horaire x(t) en fonction de l'accélération a, la vitesse initiale V_0 , l'abscisse initial x_0 et le temps t (dans le cas d'un mouvement uniformément varié).
 - b Donner l'équation horaire $x_1(t)$ de l'automobile dans l'intervalle du temps [0s,8s].
- 4°) Arrivant au point $\, B \,$ l'automobiliste termine son déplacement avec vitesse constante $\, \| \, V_1 \, \| = 16 \, m.s^{-1} \,$
 - a Rappeler l'équation horaire x(t) en fonction de la vitesse initiale V_0 , l'abscisse initial x_0 et le temps t (dans le cas d'un mouvement uniforme).
 - b Donner l'équation horaire $\stackrel{\cdot}{X_1}$ (t) de l'automobile pour $t \geq 8\,s$.
- 5°) À l'instant du démarrage de l'automobiliste au feu vert c'est à dire au point A; un camion le dépasse avec une vitesse constante $\|V_2\| = 12 \text{ m.s}^{-1}$.

Au bout de combien de temps l'automobile rattrapera – t- elle le camion ?