Lycée ch -khaznadar Teboursouk Prof : Rakrouki .M

Devoir de Controle n°1

Classe: 4^{ème} Math Durée: 180 minutes Date: 09/11/10

<u>Une grande importance sera attachée à la clarté de la rédaction et au soin de la présentation</u>

EXERCICE1 (4pts):

Cocher la réponse exacte :

1) La fonction $x \mapsto \sin(\pi x^2)$ est dérivable sur IR et sa fonction dérivée est :

 $2x\cos(\pi x^2)$ \Box , $2\pi x\sin(\pi x^2)$ \Box , $2\pi x\cos(\pi x^2)$

2) Soit fune fonction dérivable sur IR telle que f(3) = 0 et f'(3) = 2 alors $\lim_{x \to 3} \frac{f(\sqrt{x+6})}{x-3}$ est égal à :

 $\frac{1}{3}$ \Box , 2 \Box , 0

3) Si $\frac{\pi}{6}$ est un argument de z alors un argument de $\frac{i}{2}$ est :

 $\frac{\pi}{6}$, $-\frac{5\pi}{6}$, $\frac{5\pi}{6}$

4) L'écriture exponentielle de $\frac{1}{i+tg(\alpha)}$ $où \alpha \in \left[0, \frac{\pi}{2}\right]$ est :

 $\cos(\alpha)e^{i(\alpha-rac{\pi}{2})}$, $\cos(\alpha)e^{i(\alpha+rac{\pi}{2})}$, $\sin(\alpha)e^{i(\alpha-rac{\pi}{2})}$.

5) Soit U une suite définie sur IN* et vérifiant $\forall n \in \square^*$; $1 - \frac{1}{n} \le U_n \le 1 - \frac{1}{n+1}$ alors U est :

croissante \square , décroissante \square , ni croissante ni décroissante \square

6) Soit U la suite définie sur IN* par $U_n = \underbrace{333......3}_{n \ fois} + \frac{1}{3}$. Alors U est une suite géométrique de raison :

 $\frac{1}{2}$, 3 , 10 .

EXERCICE2 (5pts):

Soit U la suite définie sur IN par : $U_0 \in IR$ et $\forall n \in \square$, $U_{n+1} = \frac{1 + U_n^2}{-1 + U_n}$.

I) On suppose que $U_0 > 1$.

1)a) Montrer que pour tout entier naturel n on a : $U_n > 1$ et que $U_{n+1} - U_n > 1$.

b) Montrer que U n'est pas majorée et donner sa limite.

II) On pose $U_0 = -\frac{1}{2}$.

1)a) Montrer que pour tout entier naturel n on a : $-1 < U_n < 0$.

b) Montrer que la suite U est décroissante puis déduire qu'elle est convergente et déterminer sa limite.

2) a) Montrer que $\forall n \in IN$, $U_{n+1} + 1 \le \frac{1}{2}(U_n + 1)$ puis déduire que $\forall n \in IN$, $U_n + 1 \le \left(\frac{1}{2}\right)^{n+1}$.

b) Retrouver alors la limite de la suite U.

3) Pour tout $n \in \square^*$, on pose $S_n = \sum_{k=0}^{n-1} (U_k + 1)$.

a) Montrer que la suite S est croissante. b) Montrer que la suite S est majorée par 1.

4) Soit V la suite définie sur IN par : $V_0=1$ et $\forall n\in \square$, $V_{n+1}=V_n+\sqrt{V_n^2-U_n}$.

- b) Calculer $\lim_{x\to +\infty} V_n$.

EXERCICE3 (5pts):

Soit f la fonction définie sur $\left[0; \pi^2\right]$ par: $f(x) = \cos(\sqrt{x})$ et C_f sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1)a)Vérifier que pour tout réel $x \in \left[0; \pi^2\right]$ on $a: f(x)-1=-2\sin^2(\frac{\sqrt{x}}{2})$.
 - b) En déduire que f est dérivable en 0 et donner f'(0).
- 2)a) Montrer que f est dérivable sur $\left[0;\pi^2\right]$ et calculer f'(x).
 - b) Etudier le sens de variations de f et dresser son tableau de variation sur $\lceil 0; \pi^2 \rceil$.
- 3)a) Résoudre dans $\left[0; \pi^2\right]$ l'équation f(x) = 0.
 - b) Déterminer une équation de la tangente T à la courbe C_f au point d'abscisse $\frac{\pi^2}{4}$.
 - c) Tracer T et C_f.
- 4) Soit φ_n la fonction définie sur [0;1] par $\varphi_n(x) = f(x) x^n \quad \forall n \in \square^*$.
 - a) Montrer qu'il existe un unique $a_n \in]0;1[$ tel que $\varphi_n(a_n) = 0$.
 - b) En déduire que la suite (a_n)est croissante.

EXERCICE4 (6pts):

Le plan complexe P est muni d'un repère orthonormé direct (O,\vec{u},\vec{v}) . Soit A le point d'affixe -1+i et θ un réel de l'intervalle $\left]-\frac{3\pi}{4};\frac{\pi}{4}\right[$. On considère l'équation $(E):z^2-2iz-1-ie^{i2\theta}=0$. On désigne par z_1 et z_2 les solutions de (E).

- 1)a) Déterminer la valeur de θ pour que $z_0 = 1 + i$ soit une solution de (E).
 - b) Résoudre l'équation (E) pour la valeur de $\,\theta\,$ trouvée.
- 2) Montrer, sans résoudre (E), que $\arg(z_1) + \arg(z_2) \equiv \theta + \frac{5\pi}{4} [2\pi]$.
- 3) a) Résoudre dans \Box l'équation (E). b) Ecrire les solutions sous formes exponentielles. 4) On désigne par M_1 et M_2 les points d'affixes respectives $i + e^{i(\theta + \frac{\pi}{4})}$ et $i e^{i(\theta + \frac{\pi}{4})}$.
- a) Montrer que M_1 et M_2 sont symétriques par rapport à un point fixe J que l'on précisera.
- b) Déterminer et construire l'ensemble des points M_1 lorsque θ varie dans $\left] -\frac{3\pi}{4}; \frac{\pi}{4} \right[$. En déduire l'ensemble des points M_2 .
- 5) Soit fl'application du plan $P \setminus \{A\}$ dans le plan P qui à tout point M(z) associe M'(z') tel que $z' = \frac{z^2}{z+1-i}$.
- a) Déterminer l'ensemble des points invariants par f.
- b) Déterminer l'ensemble des points M(z) tels que z' est imaginaire pur.
- c) Montrer que pour tout point M de $P \setminus \{A\}$ on a : $(\overrightarrow{OM}, \overrightarrow{OM'}) \equiv (\overrightarrow{MA}, \overrightarrow{MO})[2\pi]$. En déduire l'ensemble des points M tels que O, M et M' soient alignés.

