Série n° 5

(Molécules et ions polyatomique – Quantité de la matière – Loi des nœuds)

Exercice n° 1:

- 1) Comment sont les molécules d'un corps pur ?
- 2) Comment sont les molécules d'un mélange homogène de deux corps purs ?
- 3) Comment sont les molécules d'un mélange hétérogène de deux corps purs ?

Exercice n° 2:

- 1) Qu'est-ce qu'une molécule?
- 2) La molécule de l'acide oxalique est formée de 2 atomes d'hydrogène (H), de 2 atomes de carbone (C) et de **n** atomes d'oxygène (O).
 - a. Déterminer le nombre d'atomes d'oxygène sachant que l'atomicité de la molécule est 8.
 - **b.** Ecrire la formule de cette formule.
 - c. Le corps pur correspondant à cette molécule est-il simple ou composé ? Justifier la réponse.

Exercice n° 3:

- 1) Qu'est-ce qu'un ion simple?
- 2) Compléter le tableau suivant :

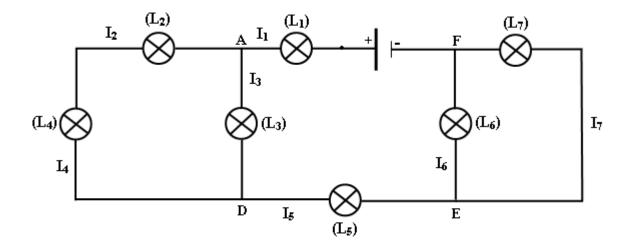
Atome							
Nom	Sym	bole Nombi		e d'électrons		Charge du noyau	
Fer							
Ion simple							
Nom	Symbole	Nombre d'électrons		Charge de l'ion		Cation ou anion	
Ion fer	Fe ³⁺	23	3	_			

- 3) Qu'est-ce qu'un ion polyatomique?
- 4) Donner les formules des deux ions suivants :
 - L'ion permanganate est formé d'un atome de manganèse (Mn) et de 4 atomes d'oxygène (O). Sa charge électrique est $\mathbf{q} = -\mathbf{e}$.
 - L'ion thiosulfate est formé de deux atomes de soufre (S) et de 3 atomes d'oxygène (O). Il porte une charge électrique égale à -3,2.10⁻¹⁹ C.

Exercice n° 4:

On donne : $N_A = 6.02.10^{23}$

- 1) La masse d'un atome de carbone (C) est $m_C = 1.99.10^{-26}$ kg.
 - a. Déterminer le nombre d'atomes N_C de carbone contenus dans un échantillon de masse 30 g.
- b. En déduire le nombre de mole n_C de carbone contenues dans ce même échantillon. 2) La masse d'un atome de sodium (Na) est $m_{Na} = 3.81.10^{-26}$ kg. On dispose d'un échantillon contenant **0,5 mol** de sodium.
 - a. Déterminer le nombre d'atomes N_{Na} de sodium contenus dans cet échantillon.
 - **b.** En déduire la masse de cet échantillon M_{Na} .
- 3) On dispose de 9,63.10²³ atomes de calcium (Ca) de masse $M_{Ca} = 64$ g.
 - a. Déterminer la masse m_{Ca} d'un atome de calcium.
 - **b.** Déterminer le nombre de moles n_{Ca} contenues dans cet échantillon de calcium.



Exercice n° 5:

Soit le circuit représenté ci-dessous. Il comporte un générateur et plusieurs lampes. Seules les lampes (L_6) et (L_7) sont identiques.

On donne:

$$I_1 = 0.1 A \text{ et } I_4 = 20 \text{ mA}.$$

- 1) Indiquer le sens du courant dans chaque branche du circuit.
- 2) Comparer, en justifiant votre réponse, les valeurs de I_2 et I_4 .
- 3) Ecrire la loi des nœuds au nœud A.
- 4) En déduire la valeur de I₃.
- 5) Indiquer sur le schéma du circuit l'emplacement de l'ampèremètre pour mesurer l'intensité I₃.
- 6) Calculer I_5 , I_6 et I_7 .