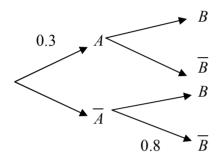
Thèmes abordés:

Similitude ; Arithmétique ; Espace ; Equations différentielles du second ordre ; primitives et intégrales.

Exercice n°1: ©

Pour chacune des questions suivantes, une seule des trois propositions est exacte.

1) On a représenté une expérience aléatoire par l'arbre de probabilité ci – dessous :



Sachant que p(B) = 0.41 alors P(B|A) = :

- (a) 0,3.
- (b) 0,9.
- (c) 0,6.
- 2) Le plan est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) . (C) est la courbe représentative de la fonction f définie par $f(x) = \sqrt{1 + \ln x}$. On fait tourner autour de l'axe des abscisses l'arc de la courbe constitué par les points de (C) d'abscisses comprises entre 1 et e. Le volume de \mathcal{V} du solide ainsi engendré est :
 - (a) π .
 - (b) πe .
 - (c) $\pi(e-1)$.
- 3) Une primitive sur IR de la fonction $x \mapsto \frac{x}{x^2 + 1}$ est :
 - (a) $x \mapsto \ln\left(\sqrt{x^2+1}\right)$
 - (b) $x \mapsto \ln(x^2 + 1)$
 - (c) $x \mapsto 2 \ln(x^2 + 1)$.

Exercice n°2:

Dans le plan orienté, on considère un carré ABCD de centre O tel que $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2} [2\pi]$.

On désigne par I le milieu du segment [AB] et par Δ la droite qui porte la bissectrice intérieure de $(\overrightarrow{AB}, \overrightarrow{AC})$.

- 1) Soit f la similitude directe qui envoie I en O et B en C.
- (a) Déterminer le rapport et une mesure de l'angle de f.
- (b) Montrer que le point A est le centre de f. En déduire la forme réduite de f.
- 2) Soit R la rotation de centre A et d'angle dont une mesure est $\frac{\pi}{4}$.
- (a) Vérifier que $R = S_{(AC)} \circ S_{\Delta}$.
- (b) Soit $\sigma = f \circ S_{\Lambda}$. Prouver que σ est une similitude indirecte et déterminer sa forme réduite.
- 3) Le plan est muni d'un repère orthonormé direct $(\Omega, \vec{u}, \vec{v})$.

Soient $z_A = -1 + i$; $z_C = i\sqrt{2}$; $z_E = 2 - 4i$ et $z_F = 3 + 2i$ les affixes respectifs des points A, C, E et F.

- (a) Montrer que la transformation complexe de g qui à tout point M d'affixe z associe le point M ' d'affixe z' tel que : $z' = \frac{1+i}{\sqrt{2}} \frac{z}{z} 1 + i \left(1 + \sqrt{2}\right)$ est celle de la symétrie orthogonale d'axe (AC).
- (b) Montrer que la forme complexe de σ est $z' = (1+i)\overline{z} 1 + 3i$.
- 4) (a) Déterminer l'affixe du point $G = \sigma(E)$, puis vérifier que \overrightarrow{AF} et \overrightarrow{AG} sont orthogonaux.
- (b) On considère un point M d'affixe z = x + iy, où $(x, y) \in IR^2$. Montrer que \overrightarrow{AF} et \overrightarrow{AM} ' avec M' = σ (M) sont orthogonaux si et seulement si 5x + 3y = -2.
- (c) Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation : 5x + 3y = -2.
- (d) En déduire les points M dont les coordonnées sont des entiers appartenant à l'intervalle [-6, 6] tels que \overrightarrow{AF} et \overrightarrow{AM} ' sont orthogonaux.

Exercice n°3: ©

- 1) Résoudre dans \mathbb{Z}^2 l'équation (E) : 3x 2y = 1.
- 2) Soit n un entier naturel non nul.
 - (a) Montrer que le couple (14n + 3, 21n + 4) est une solution de (E).
 - (b) En déduire que pgcd (14n + 3, 21n + 4) = 1.
- 3) Soit d le plus grand commun diviseur de 2n + 1 et 21n + 4.
 - (a) Montrer que d = 1 ou d = 13.
 - (b) Montrer que $n \equiv 6 \pmod{13} \Leftrightarrow d = 13$.
- 4) Pour tout entier naturel n supérieur ou égal à 2, on pose : $A = 21n^2 17n 4$ et $B = 28n^3 8n^2 17n 3$.
 - (a) Montrer que A et B sont divisibles par n-1 dans $\,\mathbb{Z}\,.$
 - (b) Déterminer en fonction de n, le pgcd de A et B.

Exercice n°4: ©

Soit ABCDEFGH un cube d'arête 1. On désigne par P le centre de gravité du triangle HGF et Q le centre de gravité du triangle FBG et on muni l'espace du repère orthonormé direct $(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$

- 1) (a) Donner une représentation paramétrique de la droite (BH).
 - (b) Montrer qu'une équation cartésienne du plan (ACF) est -x + y + z = 0
 - (c) Déterminer les points W de la droite (BH) tel que le volume de tétraèdre ACFW est égale à $\frac{11}{6}$
- 2) Soit K le milieu de [FG] et h l'homothétie de centre K et de rapport $\frac{1}{3}$
 - (a) Montrer que h(H) = P et h(B) = Q
 - (b) Donner l'expression analytique de h.
- 3) Soit le plan (R): $-x + y + z \frac{1}{3} = 0$
 - (a) Montrer que (R) l'image du plan (ACF) par h.
 - (b) Vérifier que (BH) est perpendiculaire à (ACF) en un point N que l'on déterminera les coordonnées. En déduire que (R) est perpendiculaire à (PQ) en un point N' que l'on déterminera les coordonnées.
 - (c) Donner une équation cartésienne de la sphère S tangente aux plans (R) et (ACF) et dont le centre appartient à la droite (NN').

Exercice n°5:

- 1. Déterminer l'ensemble des solutions définies sur IR, de l'équation différentielle suivante : (E) : y'' + y = 0.
- 2. Soit g une fonction deux fois dérivable sur IR*.

On définit la fonction f de IR* dans IR par : $f(x) = xg\left(\frac{1}{x}\right)$.

Exprimer f''(x) à l'aide de $g''\left(\frac{1}{x}\right)$ et de x.

3. On considère l'équation différentielle (E') : $y'' = -\frac{1}{x^4}y$.

Montrer que la fonction g est solution de (E'), si et seulement si, la fonction f définie pour tout réel non

nul x par $f(x) = xg\left(\frac{1}{x}\right)$ est solution de (E).

- 4. En déduire toutes les solutions de (E') définies sur chacun des intervalles]- ∞ , 0[et]0, + ∞ [.
- 5. Soit g une solution de l'équation (E') définie sur $]0, +\infty[$.
 - (a) Déduire des questions précédentes une primitive de la fonction $x \mapsto \frac{1}{x^4}g(x)$
 - (b) Calculer la valeur de l'intégrale $\int_{-\frac{1}{\pi}}^{\frac{2}{\pi}} \frac{1}{x^3} \sin\left(\frac{1}{x}\right) dx$

Corrigé

Exercice n°1:

1)
$$P(B) = p(A) \times p(B|A) + p(\overline{A}) \times p(B|\overline{A}) \Rightarrow p(B|A) = \frac{0.41 - 0.7 \times 0.2}{0.3} = 0.9$$

2)
$$\mathcal{V} = \int_{1}^{e} \pi (1 + \ln x) dx = \pi [x + x \ln x - x]_{1}^{e} = \pi e$$

3) Une primitive sur IR de la fonction
$$x \mapsto \frac{x}{x^2+1} = \frac{1}{2} \times \frac{2x}{x^2+1}$$
 est : $x \mapsto \frac{1}{2} \ln(x^2+1) = \ln(\sqrt{x^2+1})$.

Exercice n°3:

- 1) (x, y) est une solution de (E) $\Leftrightarrow 3x 2y = 1$.
 - (1, 1) est une solution particulière $\Leftrightarrow 3 \times 1 2 \times 1 = 1$

$$\Rightarrow 3(x-1)-2(y-1)=0 \Rightarrow 3(x-1)=2(y-1)\Rightarrow 3|2(y-1), \text{ or } 3 \land 2=1 \Rightarrow 3|(y-1)\Rightarrow \text{ il existe } k \in \mathbb{Z}$$

tel que
$$y - 1 = 3k \Rightarrow y = 1 + 3k$$
, or $3(x - 1) = 2(y - 1) \Rightarrow 3(x - 1) = 2 \times 3k \Rightarrow x = 1 + 2k$

$$\Rightarrow$$
 $(x, y) = (1 + 2k, 1 + 3k)$; $k \in \mathbb{Z}$.

Inversement: $\forall k \in \mathbb{Z}$, $3(1+2k)-2(1+3k)=1 \Rightarrow (1+2k, 1+3k)$ est une solution de (E).

Ainsi
$$S_{\mathbb{Z}^2} = \{ (1 + 2k, 1 + 3k) ; k \in \mathbb{Z} \}$$

- 2) Soit n un entier naturel non nul.
 - (a) (14n + 3, 21n + 4) est une solution de (E).
 - (b) $(14n + 3) \times 3 + (21n + 4) \times (-2) = 1$, avec $(3, -2) \in \mathbb{Z}^2$ alors d'après l'identité de Bezout on a : 14n + 3 et 21n + 4 sont premiers entre eux \Rightarrow pgcd (14n + 3, 21n + 4) = 1.
- 3) Soit d le plus grand commun diviseur de 2n + 1 et 21n + 4.
 - (a) d|2n + 1 et $d|21n + 4 \Rightarrow d|21(2n + 1) 2(21n + 4) \Rightarrow d|13$, or $d \in IN^* \Rightarrow d = 1$ ou d = 13.
 - (b) $n \equiv 6 \pmod{13} \Leftrightarrow d = 13$?
 - Si $n \equiv 6 \pmod{13}$ alors $2n + 1 \equiv 0 \pmod{13}$ et $21n + 4 \equiv 0 \pmod{13} \Rightarrow 13|2n + 1$ et $13|21n + 4 \Rightarrow 13|d$, or $d|13 \Rightarrow d = 13$.
 - Inversement : si d = 13 \Rightarrow 13|2n + 1 et 13|21n + 4 \Rightarrow 13|21n + 4 10(2n + 1) \Rightarrow 13|n 6 \Rightarrow n 6 \equiv 0 (mod 13) \Rightarrow n \equiv 6 (mod 13).
- 4) (a) $A = 21n^2 17n 4 = (n-1)(21n + 4) \Rightarrow (n-1)|A$

$$B = 28n^3 - 8n^2 - 17n - 3 = (n-1)(28n^2 + 20n + 3) = (n-1)(14n + 3)(2n + 1) \Rightarrow (n-1)|B|$$

(b) A
$$\Lambda$$
 B = $(n-1)(21n+4) \Lambda (n-1)(14n+3)(2n+1) = (n-1)[(21n+4) \Lambda (14n+3)(2n+1)]$, or

pgcd
$$(14n + 3, 21n + 4) = 1 \Rightarrow A \wedge B = (n - 1)[(21n + 4) \wedge (2n + 1)]$$

- Si $n \equiv 6 \pmod{13}$ alors A $\Lambda B = 13(n-1)$
- Si non alors A Λ B = n 1.

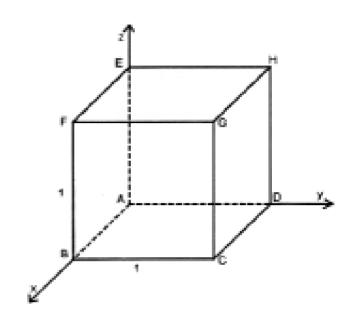
Exercice n°4:

1) (a) B(1, 0, 0) et H(0, 1, 1)
$$\Rightarrow \overrightarrow{BH} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

$$\Rightarrow (BH): \begin{cases} x = 1 - \alpha \\ y = \alpha \\ z = \alpha \end{cases}; \alpha \in IR$$

(b) A(0, 0, 0); C(1, 1, 0) et F(1, 0, 1)

$$\overrightarrow{AC} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \text{ et } \overrightarrow{AF} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \Rightarrow \overrightarrow{AC} \wedge \overrightarrow{AF} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$



Est un vecteur normal à (ACF)

$$\Rightarrow$$
 (ACF): $x-y-z+d=0$, or A(0, 0, 0) \in (ACF) \Rightarrow d=0 \Rightarrow (ACF): $x-y-z=0$.

(c) W \in (BH) et V(ACFW) =
$$\frac{11}{6} \Rightarrow \frac{1}{6} \left| \left(\overrightarrow{AC} \wedge \overrightarrow{AF} \right) \cdot \overrightarrow{AW} \right| = \frac{11}{6} \Rightarrow \left| \left(\overrightarrow{AC} \wedge \overrightarrow{AF} \right) \cdot \overrightarrow{AW} \right| = 11$$

Or W
$$(1 - \alpha, \alpha, \alpha) \Rightarrow |1 - \alpha - \alpha - \alpha| = 11 \Rightarrow 1 - 3\alpha = 11$$
 ou $1 - 3\alpha = -11 \Rightarrow \alpha = -\frac{10}{3}$ ou $\alpha = 4$

$$\Rightarrow$$
 W $\left(\frac{13}{3}, -\frac{10}{3}, -\frac{10}{3}\right)$ ou W (-3, 4, 4).

- 2) Soit K le milieu de [FG] et h l'homothétie de centre K et de rapport $\frac{1}{3}$
 - (a) P est le centre de gravité du triangle HGF et Q le centre de gravité du triangle FBG

$$\Rightarrow \overrightarrow{KP} = \frac{1}{3}\overrightarrow{KH}$$
 et $\overrightarrow{KQ} = \frac{1}{3}\overrightarrow{KB} \Rightarrow h(H) = P$ et $h(B) = Q$.

(b)
$$h(M) = M' \Leftrightarrow \begin{cases} x' = \frac{1}{3}x + \left(1 - \frac{1}{3}\right)x_K \\ y' = \frac{1}{3}y + \left(1 - \frac{1}{3}\right)y_K, \text{ or } K\left(1, \frac{1}{2}, 1\right) \Rightarrow \begin{cases} x' = \frac{1}{3}x + \frac{2}{3} \\ y' = \frac{1}{3}y + \frac{1}{3} \end{cases} \\ z' = \frac{1}{3}z + \left(1 - \frac{1}{3}\right)z_K \end{cases}$$

3) (a) (R):
$$-x + y + z - \frac{1}{3} = 0$$

▶ (R) et (ACF) ont même vecteur normal
$$\vec{n} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \Rightarrow$$
 (R) // (ACF)

Or A(0, 0, 0)
$$\in$$
 (ACF) et h(A) = A' $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right) \in (R) \Rightarrow h((ACF)) = (R).$

(b)

⇒
$$\overrightarrow{BH} \begin{pmatrix} -1\\1\\1 \end{pmatrix}$$
 est un vecteur normal à (ACF) \Rightarrow (BH) \perp (ACF)

Soit N le point d'intersection de (BH) avec (ACF) \Rightarrow les coordonnées de N vérifient : $\begin{cases} x = 1 - \alpha \\ y = \alpha \\ z = \alpha \\ x - y - z = 0 \end{cases}$

$$\Rightarrow \alpha = \frac{1}{3} \Rightarrow N\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right).$$

(BH) \perp (ACF) en N, or h conserve l'orthogonalité et le contact

$$\Rightarrow h \ ((BH)) \perp h \ ((ACF)) \ en \ h(N) = N' \\ \Rightarrow (PQ) \perp (R) \ en \ N' \ \left(\frac{8}{9}, \frac{4}{9}, \frac{7}{9}\right).$$

- (c) S est la sphère tangente aux plans (R) et (ACF) et dont le centre appartient à la droite (NN').
- ightharpoonup Soit I(a,b,c) le centre de la sphère

On a : d(I, (ACF)) = d(I, (R))
$$\Rightarrow \frac{|a-b-c|}{\sqrt{3}} = \frac{|a-b-c+\frac{1}{3}|}{\sqrt{3}} \Rightarrow$$

$$\begin{cases} a-b-c = a-b-c+\frac{1}{3} \text{ impossible} \\ ou & \Rightarrow 2a-2b-2c+\frac{1}{3} = 0 \\ a-b-c = -a+b+c-\frac{1}{3} \end{cases}$$

De plus on a : I \in (NN') :
$$\begin{cases} a = \frac{2}{3} + \frac{2}{9}t \\ b = \frac{1}{3} + \frac{1}{9}t \ ; \ t \in IR \\ c = \frac{1}{3} + \frac{4}{9}t \end{cases}$$

$$\Rightarrow \frac{4}{3} + \frac{4}{9}t - \frac{2}{3} - \frac{2}{9}t - \frac{2}{3} - \frac{8}{9}t + \frac{1}{3} = 0 \Rightarrow t = \frac{1}{2} \Rightarrow I\left(\frac{7}{9}, \frac{7}{18}, \frac{5}{9}\right)$$

N.B: I est le milieu de [NN'].

Soit R le rayon de la sphère
$$\Rightarrow$$
 R = d(I, (ACF)) \Rightarrow R = $\frac{\left|\frac{7}{9} - \frac{7}{18} - \frac{5}{9}\right|}{\sqrt{3}} = \frac{\sqrt{3}}{18}$

$$\Rightarrow S: \left(x - \frac{7}{9}\right)^2 + \left(x - \frac{7}{18}\right)^2 + \left(x - \frac{5}{9}\right)^2 = \frac{1}{108}.$$

Exercice n°5:

1) (E):
$$y'' + y = 0 \Leftrightarrow y(x) = a \cos x + b \sin x$$
, où $(a,b) \in \mathbb{R}^2$

2) g une fonction deux fois dérivable sur IR*;
$$f(x) = xg\left(\frac{1}{x}\right)$$
.

$$f'(x) = g\left(\frac{1}{x}\right) + x\left(-\frac{1}{x^2}g'\left(\frac{1}{x}\right)\right) = g\left(\frac{1}{x}\right) - \frac{1}{x}g'\left(\frac{1}{x}\right)$$

$$f''(x) = -\frac{1}{x^2}g'\left(\frac{1}{x}\right) + \frac{1}{x^2}g'\left(\frac{1}{x}\right) - \frac{1}{x}\left(-\frac{1}{x^2}g''\left(\frac{1}{x}\right)\right) = \frac{1}{x^3}g''\left(\frac{1}{x}\right)$$

3) (E'):
$$y'' = -\frac{1}{x^4}y$$
.

$$f(x) = xg\left(\frac{1}{x}\right)$$
 est solution de (E)

$$\Leftrightarrow f''(x) + f(x) = 0$$

$$\Leftrightarrow \frac{1}{x^3}g''\left(\frac{1}{x}\right) + xg\left(\frac{1}{x}\right) = 0$$

$$\Leftrightarrow g''\left(\frac{1}{x}\right) = -x^4g\left(\frac{1}{x}\right), \ \forall \ x \in \mathbb{R}^*$$

$$\Leftrightarrow g''(x) = -\frac{1}{x^4}g(x) \Leftrightarrow g \text{ est solution de (E')}.$$

4) g est solution de (E')

$$\Leftrightarrow f(x) = xg\left(\frac{1}{x}\right)$$
 est solution de (E)

$$\Leftrightarrow f(x) = xg\left(\frac{1}{x}\right) = a\cos x + b\sin x$$

$$\Leftrightarrow g\left(\frac{1}{x}\right) = \frac{1}{x}(a\cos x + b\sin x)$$

$$\Leftrightarrow g(x) = x \left(a \cos\left(\frac{1}{x}\right) + b \sin\left(\frac{1}{x}\right) \right), \forall x \in \mathbb{R}^*$$

5) Soit g une solution de l'équation (E') définie sur $]0, +\infty[$.

$$\Leftrightarrow g(x) = x \left(a \cos\left(\frac{1}{x}\right) + b \sin\left(\frac{1}{x}\right) \right), \forall x \in]0, +\infty[.$$

(a) Soit
$$h: x \mapsto \frac{1}{x^4} g(x) \Rightarrow h(x) = -g''(x), \forall x \in]0, +\infty[$$
.

 \Rightarrow une primitive de h sur]0, + ∞ [est H : $x \mapsto -g'(x)$

$$H(x) = -\left(a\cos\left(\frac{1}{x}\right) + b\sin\left(\frac{1}{x}\right)\right) - x\left[-\frac{1}{x^2}\left(-a\sin\left(\frac{1}{x}\right) + b\cos\left(\frac{1}{x}\right)\right)\right]$$

$$\Rightarrow H(x) = \left(-a + \frac{b}{x}\right) \cos\left(\frac{1}{x}\right) - \left(b + \frac{a}{x}\right) \sin\left(\frac{1}{x}\right), \ \forall \ x \in]0, + \infty[.$$

(b)
$$\int_{-\frac{1}{\pi}}^{\frac{2}{\pi}} \frac{1}{x^3} \sin\left(\frac{1}{x}\right) dx = \int_{-\frac{1}{\pi}}^{\frac{2}{\pi}} \frac{1}{x^4} \times \left(x \sin\left(\frac{1}{x}\right)\right) dx$$

On prend a = 0 et b = 1, on aura $g(x) = x \sin\left(\frac{1}{x}\right)$

$$\int_{-\frac{1}{\pi}}^{\frac{2}{\pi}} \frac{1}{x^4} \times \left(x \sin\left(\frac{1}{x}\right) \right) dx = \int_{-\frac{1}{\pi}}^{\frac{2}{\pi}} \frac{1}{x^4} \times g(x) dx = \left[-g'(x) \right]_{\frac{1}{\pi}}^{\frac{2}{\pi}} = g'\left(\frac{1}{\pi}\right) - g'\left(\frac{2}{\pi}\right)$$

Avec
$$g'(x) = \sin\left(\frac{1}{x}\right) - \frac{1}{x}\cos\left(\frac{1}{x}\right) \Rightarrow \int_{\frac{1}{\pi}}^{\frac{2}{\pi}} \frac{1}{x^3}\sin\left(\frac{1}{x}\right)dx = \pi - 1$$