$4^{\text{\`e}me}$ math

B.H.Hammouda Fethi

<u>I/Définitions :</u>

Soit I un intervalle de IR et f une fonction définie sur I.

- On dit que f réalise une bijection de I sur f(I) si pour tout y de f(I) l'équation f(x) = y admet une unique solution dans I.
- On appelle fonction réciproque de f et on note f^{-1} la fonction définie sur f(I) qui à tout y de f(I) associe l'unique solution dans I de l'équation f(x) = y.

Exercice1:

Soit g la fonction définie sur $]-\infty,0]$ par $g(x)=2x^2-3$.

- 1) Déterminer $g(]-\infty,0]$).
- 2) Montrer que l'équation g(x) = y admet une unique solution dans $]-\infty,0]$.
- 3) En déduire la fonction g^{-1} .

II/ Fonction réciproque d'une fonction strictement monotone :

Théorème:

Soit f une fonction continue et strictement monotone sur un intervalle I . on a les propriété suivantes :

- f réalise une bijection de I sur f(I).
- la fonction réciproque de f est une bijection de f(I) sur I et on a: pour tout $x \in I$ et $y \in f(I)$ $f(x) = y \Leftrightarrow x = f^{-1}(y)$.
- Pour tout $x \in I$, $f^{-1} \circ f(x) = x$ et pour tout $y \in f(I)$, $f \circ f^{-1}(y) = y$.
- f^{-1} a le même sens de variation sur f(I) que f sur I.
- f^{-1} est continue sur f(I).
- Les courbes représentatives de f est de f^{-1} dans un repère orthonormée sont symétrique par rapport à la droite Δ : y = x.

Exercice2:

Soit $g: x \to \sqrt{x^2 + 1}$.

- a) Montrer que g réalise une bijection de IR_+ sur $[1,+\infty[$.
- b) Déterminer la fonction g^{-1} .

Exercice3:

Soit f la fonction définie sur $\left| -\frac{\pi}{2}, \frac{\pi}{2} \right|$ par $f(x) = \sin x$.

- 1) Montrer que f réalise une bijection de $[1,+\infty[$ sur un intervalle J que l'on précisera .
- 2) Donner les valeurs de $f^{-1}\left(\frac{1}{2}\right)$, $f^{-1}\left(-\frac{\sqrt{3}}{2}\right)$, $f^{-1}\left(\frac{\sqrt{2}}{2}\right)$, $f^{-1}\left(1\right)$.
- 3) Tracer dans un repère orthonormée ζ_f et $\zeta_{f^{-1}}$.

Théorème:

Soit f une fonction strictement monotone d'un intervalle I sur f(I), a un réel de I et b = f(a).

Si f est dérivable en a et si $f'(a) \neq 0$, alors f^{-1} est dérivable en b et $(f^{-1})'(b) = \frac{1}{f'(a)}$.

Théorème:

Soit f une fonction bijection d'un intervalle I sur f(I).

Si f est dérivable sur I et $f'(x) \neq 0$ pour tout $x \in I$, alors f^{-1} est dérivable sur f(I) et

$$(f^{-1})'(y) = \frac{1}{f'[f^{-1}(y)]}$$
 pour tout $y \in f(I)$.

Suite de l'éxercice3 :

- 4) Montrer que f^{-1} est dérivable en $\frac{\sqrt{2}}{2}$.
- 5) Etudier la dérivabilité de f^{-1} à droite en -1 et à gauche en 1.
- 6) Exprimer $(f^{-1})'(x)$ pour tout $x \in]-1,1[$.

Exercice4:

Activité 4 page 82.

III/ Fonction racine $n^{i\grave{e}me}$ pour $n \ge 2$:

Théorème:

Soit $n \in IN * \setminus \{1\}$, la fonction $f: x \to x^n$ est bijective de IR_+ sur IR_+ elle admet une fonction réciproque strictement croissante de IR_+ sur IR_+ appelée fonction racine $n^{i \`eme}$, noté $\sqrt[n]{}$.

Conséquences :

- Pour tout réels positifs x et y, $y = x^n$ ssi $x = \sqrt[n]{y}$.
- $\lim_{x \to +\infty} \sqrt[n]{x} = +\infty$.

Conséquences:

Soit deux entiers n et p tel que $n \ge 2$ et $p \ge 2$ et deux réel positifs a et b .alors :

$$\sqrt[n]{a^n} = a , \left(\sqrt[n]{a}\right)^n = a , \sqrt[n]{ab} = \sqrt[n]{a}.\sqrt[n]{b} . \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} , b \neq 0.$$

$$\sqrt[n]{a} = \sqrt[n-p]{a^p} \cdot \left(\sqrt[n]{a}\right)^p = \sqrt[n]{a^p} \cdot \sqrt[n]{\sqrt[p]{a}} = \sqrt[np]{a}.$$

Théorème:

Soit $n \in IN * \setminus \{1\}$, la fonction $f: x \to \sqrt[n]{x}$ est continue sur $[0, +\infty[$ et dérivable sur $]0, +\infty[$ de plus

$$f'(x) = \frac{1}{n(\sqrt[n]{x^{n-1}})}$$
 pour $x > 0$.

Théorème :

Soit U une fonction dérivable et positive sur un intervalle I et $n \ge 2$.

La fonction $f: x \to \sqrt[n]{u(x)}$ est continue sur I est dérivable en tout $x \in I$ tel que $u(x) \neq 0$ de

plus
$$f'(x) = \frac{u'(x)}{n(\sqrt[n]{u(x)^{n-1}})}$$
, pour tout x de I tel que $u(x) > 0$.