w.devoir@t.net

Produit scalaire et produit vectoriel dans l'espace

Soient A, B et C trois points quelconques de l'espace.

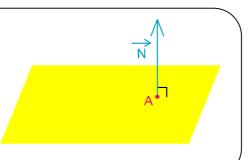
On a : \overrightarrow{AB} . \overrightarrow{AC} = \overrightarrow{AB} . \overrightarrow{AC} . \overrightarrow{cos} \overrightarrow{BAC}

Soient $\left(\stackrel{\rightarrow}{i}, \stackrel{\rightarrow}{j}, \stackrel{\rightarrow}{k} \right)$ une base orthonormée

de l'espace et $\vec{u}(x,y,z)$, $\vec{v}(x',y',z')$ deux vecteurs de l'espace. On a :

$$\vec{U}$$
 . \vec{V} = $\chi \chi'$ + $V V'$ + $Z Z'$

Le plan passant par A et de vecteur normal \overrightarrow{N} , est l'ensemble des points M tels que \overrightarrow{AM} . \overrightarrow{N} = 0



Soit le plan P d'équation : a x + b y + c z + d = 0 avec $(a,b,c) \neq (0,0,0)$.

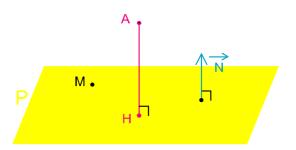
Le vecteur \overrightarrow{N} $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ est un vecteur normal à P.

.devoir@t.net

Soient le plan P : a x + b y + c z + d = 0,

A (x_A, y_A, z_A) un point de l'espace et H le projeté orthogonal de A sur P.

Soit M un point de P et \overrightarrow{N} $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ un



vecteur normal à P.

La distance du point A au plan P est le réel défini par :

d(A, P) = AH =
$$\frac{\left| \overrightarrow{AM} \cdot \overrightarrow{N} \right|}{\left\| \overrightarrow{N} \right\|}$$
 = $\frac{\left| a x_A + b y_A + c z_A + d \right|}{\sqrt{a^2 + b^2 + c^2}}$

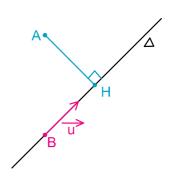
(D) une droite de l'espace de vecteur

directeur \overrightarrow{u} et passant par B.

A un point de l'espace et H son projeté orthogonal sur (D).

La distance du point A à la droite (D) est le réel défini par : d(A, (D)) = AH.

$$AH = \frac{ \left\| \overrightarrow{AB} \wedge \overrightarrow{u} \right\|}{\left\| \overrightarrow{u} \right\|}.$$



Définition:

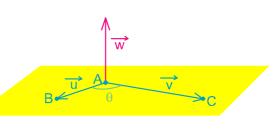
Soient \vec{u} et \vec{v} deux vecteurs de l'espace orienté et A, B et C trois points tels que $\vec{AB} = \vec{u}$ et $\vec{AC} = \vec{v}$. On appel produit vectoriel de \vec{u} et \vec{v} , le vecteur \vec{w} , noté $\vec{u} \wedge \vec{v}$ défini par :

- * Si \overrightarrow{u} et \overrightarrow{v} sont colinéaires, alors $\overrightarrow{w} = \overrightarrow{0}$.
- * Sinon alors

1/ w est normal au plan (ABC)

 $2/(\dot{u},\dot{v},\dot{w})$ est une base directe

3/
$$\|\overrightarrow{w}\| = \|\overrightarrow{u}\| \|\overrightarrow{v}\| \sin(\overrightarrow{BAC})$$



.devoir@t.net

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls et non colinéaires de l'espace.

Soit θ une mesure de l'angle orienté (\vec{u},\vec{v}) . On a :

$$sin\theta \ = \ \frac{\left\| \stackrel{\rightarrow}{u} \wedge \stackrel{\rightarrow}{v} \right\|}{\left\| \stackrel{\rightarrow}{u} \right\|. \left\| \stackrel{\rightarrow}{v} \right\|} \ et \ cos\theta \ = \ \frac{\stackrel{\rightarrow}{u} \stackrel{\rightarrow}{v}}{\left\| \stackrel{\rightarrow}{u} \right\|. \left\| \stackrel{\rightarrow}{v} \right\|}.$$

Dans une base orthonormée directe $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, on

considère les vecteurs $\vec{u} \left(\begin{array}{c} x \\ y \\ z \end{array} \right)$ et $\vec{v} \left(\begin{array}{c} x' \\ y' \\ z' \end{array} \right)$. On a :

$$\vec{u} \wedge \vec{v} = \begin{vmatrix} y & y' \\ z & z' \end{vmatrix} \vec{i} - \begin{vmatrix} x & x' \\ z & z' \end{vmatrix} \vec{j} + \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} \vec{k}.$$

$$= (yz'-zy') \vec{i} - (xz'-zx') \vec{j} + (xy'-yx') \vec{k}$$

Soit P un plan de vecteurs directeurs \vec{u} et \vec{v} .

Le vecteur $\overrightarrow{u} \wedge \overrightarrow{v}$ est un vecteur normal au plan P.

Soient A, B et C trois points de l'espace.

L'aire du triangle ABC est :

$$\frac{1}{2} \| \overrightarrow{AB} \wedge \overrightarrow{AC} \|.$$

Le volume d'un parallélépipède ABCDEFGH est $\mathscr{V} = \left| \left(\overrightarrow{AB} \wedge \overrightarrow{AD} \right) . \overrightarrow{AE} \right|$.

Le volume d'un un tétraèdre ABCD est $\mathscr{V} = \frac{1}{6} \left| \left(\overrightarrow{BC} \wedge \overrightarrow{BD} \right) . \overrightarrow{BA} \right|$.