www.devoir@t.net

I. FONCTION DERIVABLE - NOMBRE DERIVE

Soit f une fonction définie sur un intervalle ou sur une réunion d'intervalles deux à deux disjoints et a \in D f

Dire que la fonction f est **dérivable** en a et que **le nombre dérivé** de f en a est le réel L , revient à dire que **le taux de variation** de f en a , $\frac{f(a+h)-f(a)}{h}$, admet pour limite finie L quand h tend vers 0 .

Le nombre dérivé est noté f'(a), et on a: f'(a) = $\lim_{h \to 0} \frac{f(a+h)-f(a)}{h} = \lim_{x \to a} \frac{f(x)-f(a)}{x-a}$

Ex: Soit la fonction $f: x \longrightarrow x^2$ définie sur IR et a un réel quelconque.

Pour $h \neq 0$, on a:

$$t(h) = \frac{f(a+h)-f(a)}{h} = \frac{(a+h)^2-a^2}{h} = 2a+h.$$

Or
$$h = \lim_{n \to \infty} (2a + h) = 2a$$
.

Ainsi f est dérivable en a et f' (a) = 2 a .

AUTRE DEFINITION

Dire que la fonction $h \longrightarrow \frac{f(a+h)-f(a)}{h}$ a pour limite L en 0 , revient à dire que :

pour tout h , proche de 0 , $\frac{f(a+h)-f(a)}{h}$ = L + ϕ (h) , avec $\lim_{h\to 0} \phi$ (h) = 0

c'est à dire f (a + h) = f (a) + L . h + h . ϕ (h) , avec $\underset{h}{\text{lim}}_{0} \phi$ (h) = 0

Cette écriture est appelée

développement limité

à l'ordre 1 de f en a

Ainsi ...

Dire que f est <u>dérivable</u> en a , et que son <u>nombre dérivé</u> en a est le réel L , signifie que pour tout h suffisamment proche de 0 (c'est a dire au **voisinage de 0**) , on peut écrire :

f (a + h) = f (a) + L.h + h. φ (h), où φ est une fonction vérifiant $\lim_{h \to 0} \varphi$ (h) = 0

Exercice:

Pour tout h, on a: $(a + h)^2 = a^2 + 2ah + h^2$.

En posant ϕ (h) = h , on peut écrire h ² = h ϕ (h) , (on a bien $\lim_{h \to 0} \phi$ (h) = 0 .

Ainsi (a + h) 2 = a 2 + 2 a . h + h . ϕ (h) , avec $\underset{h}{\text{lim}}_{0} \phi$ (h) = 0 .

On retrouve que la fonction f de l'exemple précédent est dérivable en a et que f'(a) = 2 a.

Rem: (dérivable entraîne continue ...)

Lorsque f est dérivable en a , $h = \lim_{n \to \infty} f(a + h) = f(a)$

En effet $h \rightarrow \lim_{h \to 0} (L h + h \cdot \phi (h)) = 0 \dots$

II. QUELQUES APPLICATIONS

A) TANGENTE EN UN POINT

Un peu d'intuition ...

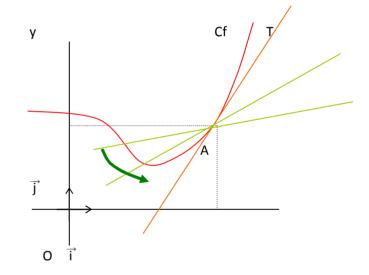
Soit M le point de Cf d'abscisse a + h.

Le coefficient directeur de la droite (AM) est :

$$\frac{f(a+h)-f(a)}{h}$$

Géométriquement, la tangente à Cf au point A se conçoit comme la droite « position limite » des sécantes (AM) lorsque M tend vers A en restant sur la courbe .

Si f est dérivable en a , la « position limite » de ces sécantes a pour coefficient directeur f ' (a) , et passe par A



Si f est dérivable en a, la courbe Cf admet au point A (a; f (a)) une tangente T de coefficient directeur f ' (a) .

Une équation de la tangente en ce point est :

T admet une équation de la forme y = f'(a)x + p;

de plus elle passe par A (a ; f (a))

Cas particulier important:

- Si f'(a) = 0, Cf admet au point d'abscisse a une tangente parallèle à l'axe des abscisses (tangente horizontale) d'équation y = f(a).
- Si $h \to 0$ $\frac{f(a+h)-f(a)}{h} = +\infty$ (ou $-\infty$), f n'est pas dérivables en a, mais Cf admet une tangente parallèle à l'axe des ordonnées (tangente verticale) d'équation x = a.

B) APPROXIMATION AFFINE LOCALE (admis)

Supposons que f soit dérivable en a . Ainsi on peut écrire f(a+h)=f(a)+f'(a). h+h. $\phi(h)$, avec

$$h \rightarrow \lim_{h \to 0} \varphi(h) = 0$$

De plus la tangente à Cf en A (a; f(a)) a pour équation y = f'(a)(x-a) + f(a)

On considère M et M' deux points d'abscisse a+h, tels que $M\in Cf$ et $M'\in T$.

 $M \in Cf$, donc $y_M = f(a + h)$ $M' \in T$, donc $y_{M'} = f(a) + h f'(a)$.

Ainsi
$$\overline{M'M} = f(a+h) - f(a) - hf'(a) = h \cdot \phi(h)$$
.

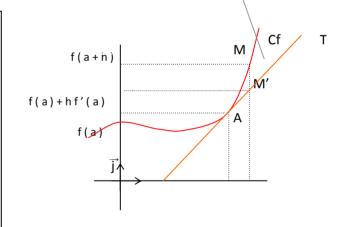
T semble proche de Cf autour du point A

Si h est proche de 0 , alors les points M et M' sont proches l'un de l'autre et f (a + h) est proche de f (a) + h f' (a)

On dit que la fonction $h \mapsto f(a) + h f'(a)$ est <u>la</u> meilleure approximation affine de la fonction :

 $h \longrightarrow f(a+h)$ au voisinage de 0.

En remplaçant f (a + h) par f (a) + h f $^{\prime}$ (a) , on commet une erreur égale à h ϕ (h) .



Remarque:

- La distance MM' mesure la valeur absolue de l'erreur commise.
- Une autre droite passant par A fournirait une autre approximation affine de f (a + h) , mais celle donnée par la tangente est la meilleure. (admis ...mais intuitif)

Exercice:

Le nombre dérivé de la fonction $f: x \longrightarrow x^2$ en un réel a est f' (a) = 2 a

Au voisinage de 0, on a donc (a + h) $^{2} \approx$ a 2 + 2a h

Par exemple , (3 ,01) 2 = (3 + 0,01) 2

Ainsi (3 ,01) $^2 \approx 9 + 2 \times 3 \times 0$,0 1 , soit (3 ,01) $^2 \approx 9$,06

Dans ce cas il est possible de déterminer l'erreur commise ; elle est de h², c'est à dire 0,0001.

ww.devoir@t.net

C) UN PEU DE PHYSIQUE: INTERPRETATION CINEMATIQUE DU NOMBRE DERIVE

Un mobile ponctuel se déplace sur un axe.

On note d (t), la distance qu'il a parcourue à l'instant t. (loi horaire)

Comme vous l'avez peut-être vu en physique, la vitesse instantanée du mobile à l'instant to est la limite des vitesses moyennes

$$\frac{d(to+h)-d(to)}{h}$$
 lorsque h tend vers 0.

Il s'agit du nombre dérivée en to de la fonction d .

Remarque:

On retrouve ces résultats dans d'autres domaines scientifiques...

Le taux de variation $\frac{f(a+h)-f(a)}{h}$ mesure en général la variation moyenne d'une grandeur sur un certain intervalle (débit moyen , coût moyen de production ...).

Le nombre dérivé, lui, est une mesure instantanée (débit instantané , coût marginal ...) .

III. FONCTIONS DERIVEES

A) DEFINITION

Par extension, f est dérivable sur [a,b] veut dire que f est dérivable sur]a,b[et que f est dérivable à droite en a et gauche en b .

On dit qu'une fonction f est <u>dérivable</u> sur un intervalle I ($I \subset Df$) si pour tout x appartenant à I, le nombre dérivé de f en x existe .

<u>La fonction dérivée</u> de f sur l est la fonction , notée f', qui , à tout x de l , associe le réel f' (x) .

Par abus de langage, on dit que f'est « la dérivée de f »

Cette définition s'étend à une réunion d'intervalles disjoints.

Exercice: La fonction f: x - x 2 est définie et dérivable sur IR et sa fonction dérivée est f': x - 2 x

On appelle $\underline{\text{ensemble de dérivabilit\'e}}$ de la fonction f, l'ensemble sur lequel la fonction dérivée f 'est définie .

Cet ensemble (noté Df') est toujours inclus dans Df.

B) DERIVEES DE QUELQUES FONCTIONS DE REFERENCE

fonction f	fonction dérivée f'	ensemble de dérivabilité	
$f: x \longmapsto k \ (k \in IR)$	f': x	IR	Cette fonction n'est pas dérivable en 0
f : x	f': x	IR	pus delivasie en s
$f: x \longmapsto \sqrt{x}$	$f': x \longmapsto \frac{1}{2\sqrt{x}}$]0;+∞[

<u>Preuve</u>: (on choisit toujours h , au voisinage de 0 et de telle sorte que f (a + h) soit définie ...ce que l'on ne définira pas à chaque fois)

1) Soit $a \in \mathbb{R}$.

Pour
$$h \neq 0$$
, on a: $t(h) = \frac{f(a+h)-f(a)}{h} = \frac{k-k}{h} = 0$, $donc_h \to 0$ $t(h) = 0$

Ainsi f est dérivable en a et f' (a) = 0, ce qui est vrai pour tout réel a ...

2) Soit $a \in \mathbb{R}$.

Pour
$$h \ne 0$$
, $t(h) = \frac{f(a+h)-f(a)}{h} = \frac{a+h-a}{h} = 1$, $donc_h \to 0$ $t(h) = 1$

Ainsi f est dérivable en a et f' (a) = 1, ce qui est vrai pour tout réel a ...

3)

Sia > 0.

Pour
$$h \neq 0$$
, $t(h) = \frac{f(a+h)-f(a)}{h} = \frac{\sqrt{a+h}-\sqrt{a}}{h} = \frac{\left(\sqrt{a+h}-\sqrt{a}\right)\times\left(\sqrt{a+h}+\sqrt{a}\right)}{h\times\left(\sqrt{a+h}+\sqrt{a}\right)} = \frac{1}{\sqrt{a+h}+\sqrt{a}}$

Or
$$h \rightarrow \lim_{h \to 0} \sqrt{a + h} = \sqrt{a}$$
, donc $h \rightarrow \lim_{h \to 0} t(h) = \frac{1}{2\sqrt{a}}$

Sia = 0

Pour h > 0, t(h) =
$$\frac{\sqrt{h}}{h} = \frac{1}{\sqrt{h}}$$
, donc $h = \frac{1}{\sqrt{h}}$ t(h) = + ∞ (ce qui bien sûr n'est pas un réel ...) $\frac{1}{\sqrt{h}}$

Donc f n'est pas dérivable en 0.

IV. OPERATIONS SUR LES FONCTIONS DERIVABLES

A) SOMME, PRODUIT ...

D représente un intervalle ou une réunion d'intervalles disjoints.

Soit u et v deux fonctions dérivables sur D et k un réel, alors :

• les fonctions k u , u + v et u . v sont dérivables sur D et :

$$(ku)'=ku'$$
, $(u+v)'=u'+v'$ et $(u.v)'=u'.v+u.v'$

• si pour tout réel a de D, v (a) \neq 0, les fonctions $\frac{1}{v}$ et $\frac{u}{v}$ sont dérivables sur D et :

$$\left(\frac{1}{v}\right)' = -\frac{v'}{v^2} \quad , \quad \left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

Preuve:

1) Soit $a \in D$

Pour
$$h \neq 0$$
, $t(h) = \frac{(ku)(a+h)-(ku)(a)}{h} = k \times \frac{u(a+h)-u(a)}{h}$, $donc_h \to 0$ $t(h) = ku'(a)$

Ainsi ku est dérivable en a et (k u) ' (a) = k u ' (a) , ce qui est vrai pour tout a ∈ D ...

2)

Soit $a \in D$

Pour
$$h \neq 0$$
, $t(h) = \frac{(u+v)(a+h)-(u+v)(a)}{h} = \frac{u(a+h)-u(a)}{h} + \frac{v(a+h)-v(a)}{h}$

Or u et v sont dérivables en a , donc $h \rightarrow 0$ $\frac{u(a+h)-u(a)}{h} = u'(a)$

et
$$\lim_{h \to 0} \frac{v(a+h)-v(a)}{h} = v'(a)$$

Ainsi u + v est dérivable en a et $h \rightarrow \lim_{h \to 0} t(h) = u'(a) + v'(a)$

On en déduit que (u + v)'(a) = u'(a) + v'(a), ce qui est vrai pour tout $a \in D$...

3)

Soit $a \in D$

Pour $h \neq 0$,

$$t(h) = \frac{(u \ v)(a+h)-(u \ v)(a)}{h} = ... = \frac{u(a+h)-u(a)}{h}v(a+h) + \frac{v(a+h)-v(a)}{h}u(a)$$

Or u et v sont dérivables en a , donc $h = \lim_{h \to 0} \frac{u(a+h)-u(a)}{h} = u'(a)$ et $\lim_{h \to 0} \frac{v(a+h)-v(a)}{h} = v'(a)$

De plus
$$h = \lim_{n \to \infty} v(a+h) = v(a)...$$

4) Soit
$$a \in D$$
 pour $h \neq 0$, $t(h) = \frac{\frac{1}{v(a+h)} - \frac{1}{v(a)}}{h} = \frac{v(a) - v(a+h)}{h v(a)v(a+h)} = -\frac{v(a+h) - v(a)}{h} \times \frac{1}{v(a)v(a+h)}$

Or v est dérivable en a , donc $h = \lim_{h \to 0} \frac{v(a+h)-v(a)}{h} = v'(a)$

De plus $h \rightarrow \lim_{0} v(a+h) = v(a)$

Donc
$$h = \lim_{n \to \infty} (h) = \frac{-v'(a)}{(v(a))^2}$$

Ainsi $\left(\frac{1}{v(a)}\right)' = \frac{-v'(a)}{(v(a))^2}$, ce qui est vrai pour tout $a \in D$...

5)
$$\frac{u}{v} = u \times \frac{1}{v} ...$$

B) CONSEQUENCES : de nouvelles formules à retenir

fonction f	fonction dérivée f'	ensemble de dérivabilité
f:x	f': x	IR
f : x	f': x	IR
$f: x \longmapsto x^n (n \in IN^*)$	f': x	IR
$f: x \longmapsto \frac{1}{x}$	$f': x \longmapsto -\frac{1}{x^2}$]-∞;0[∪]0;+∞[
$f: x \longmapsto \frac{1}{x^2}$	$f': x \longmapsto -\frac{2}{x^3}$]-∞;0[∪]0;+∞[
$f: x \longmapsto \frac{1}{x^n} (n \in IN^*)$	$f': x \longrightarrow -\frac{n}{x^{n+1}}$]-∞;0[∪]0;+∞[

Remarque: Pour $x \neq 0$, on a $\frac{1}{x^n} = x^{-n} = x^m$ et $-\frac{n}{x^{n+1}} = (-n)x^{-n-1} = ... = mx^{m-1}$ (avec m = -n)

Ainsi la dérivée de $f: x \longrightarrow x^n$ est vraie pour tout entier n (en n'oubliant pas $x \neq 0$ si n < 0)

C) POLYNÔMES ET FONCTIONS RATIONNELLES

Exercice:

$$deg(P') = deg(P) - 1$$

si deg(P) > 0

• Soit P le polynôme définie sur IR par P : x \imp 3 x 3 + 5 x 2 - x + 3

P est une somme de fonctions dérivables sur IR, donc P est dérivable sur IR et pour tout réel x :

$$P'(x) = 3 \times 3 x^2 + 5 \times 2 \times x - 1 + 0 = 9 x^2 + 10 x - 1$$

Toute fonction polynôme est dérivable sur IR

• Soit f la fonction rationnelle définie par f : $x \longmapsto \frac{2 x^2 + 1}{x - 1}$

On peut écrire $f = \frac{u}{v}$ où $u : x \longmapsto 2 x^2 + 1$ et $v : x \longmapsto x - 1$

On a v (x) = $0 \Leftrightarrow x = 1$, ainsi Df = $\mathbb{R} - \{1\}$

u et v sont dérivables sur IR donc sur IR $-\{1\}$ et v ne s'annule pas sur IR $-\{1\}$, donc f est dérivable sur IR $-\{1\}$ et pour tout $x \neq 1$, on a :

$$f'(x) = \frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2} = \frac{4x(x-1)-(2x^2+1)}{(x-1)^2} = \frac{4x^2-4x-2x^2-1}{(x-1)^2} = \frac{2x^2-4x-1}{(x-1)^2}$$

Toute fonction rationnelle est dérivable sur son ensemble de définition.

V. **DERIVEE DE** $f:x \longmapsto g(ax+b)$ (admis)

Soit g une fonction dérivable sur un intervalle I .

Pour tout réel x, tel que a $x + b \in I$, la fonction $f : x \longrightarrow g$ (a x + b) est dérivable et : f'(x) = a g'(a x + b)

Exercice:

Soit f la fonction définie par f : $x \longrightarrow \sqrt{3x+6}$

3 x + 6
$$\geq$$
 0 \Leftrightarrow x \geq - 2 , ainsi Df = [- 2 ; + ∞ [

Pour tout $x \ge -2$, on peut écrire f(x) = g(3x+6) où g est la fonction racine carrée $g: t \longrightarrow \sqrt{t}$

La fonction g est dérivable sur] 0 ; + ∞ [et pour tout t > 0 , g '(t) = $\frac{1}{2\sqrt{t}}$

On a $3x + 6 > 0 \Leftrightarrow x > -2$

Ainsi f est dérivable sur] - 2; + ∞ [et pour tout x > -2 : f'(x) = $\frac{3}{2\sqrt{3}x+6}$