Exercice No 01:

Calculer (sans calculatrice)

$$1-\cos\left(\frac{\pi}{14}\right)+\cos\left(\frac{\pi}{7}\right)+\cos\left(\frac{3\pi}{14}\right)-\sin\left(\frac{2\pi}{7}\right)-\sin\left(\frac{5\pi}{14}\right)-\sin\left(\frac{3\pi}{7}\right)$$

$$2 - \tan\left(\frac{\pi}{9}\right) + \tan\left(\frac{2\pi}{9}\right) + \tan\left(\frac{\pi}{3}\right) + \tan\left(\frac{4\pi}{9}\right) + \tan\left(\frac{5\pi}{9}\right) + \tan\left(\frac{2\pi}{3}\right) + \tan\left(\frac{7\pi}{9}\right) + \tan\left(\frac{8\pi}{9}\right) + \tan\left(\frac{\pi}{9}\right) + \tan\left(\frac{\pi}{9$$

$$3-\cos^2\left(\frac{\pi}{5}\right)+\cos^2\left(\frac{2\pi}{5}\right)+\sin^2\left(\frac{3\pi}{5}\right)+\sin^2\left(\frac{4\pi}{5}\right)$$

4-
$$\cos^2\left(\frac{2\pi}{8}\right) + \cos^2\left(\frac{4\pi}{8}\right) + \cos^2\left(\frac{6\pi}{8}\right) + 1$$

Exercice No 02:

Soit ACDE un carré direct de coté a=2 et soit ABC un triangle équilatéral indirect.

1- a) Montrer que ABE est un triangle isocèle et déterminer la mesure de ses angles.

b) En déduire que
$$\left(\widehat{\overrightarrow{EB},\overrightarrow{ED}}\right) \equiv \frac{\pi}{12}[2\pi]$$

2- Soit H la projection orthogonale de B sur [ED].

Calculer BH et en déduire la valeur exacte de $\cos\left(\frac{\pi}{12}\right)$

Exercice N° 03:

Soit $A = 2\sin(x)[\cos(2x) + \cos(4x) + \cos(6x)]$

- 1- Montrer que pour tout $(a,b) \in \mathbb{R}^2$, on a : $\sin(a+b) + \sin(a-b) = 2\sin(a)\cos(b)$
- 2- Montrer que $A = \sin(7x) \sin(x)$
- 3- En déduire la valeur de $B = \sin^2\left(\frac{2\pi}{7}\right) + \sin^2\left(\frac{4\pi}{7}\right) + \sin^2\left(\frac{6\pi}{7}\right)$

Exercice N° 04 :

- 1- a) Montrer que pour tout $x \in \mathbb{R}$ on a : $\cos(x) + \sin(x) = \sqrt{2}\cos\left(x \frac{\pi}{4}\right)$.
 - b) Résoudre dans \mathbb{R} : $\cos(x) + \sin(x) = 0$
- 2- Montrer que pour tout $x \in \mathbb{R}$ on a : $\cos(x) \sin(x) = \sqrt{2}\cos\left(x + \frac{\pi}{4}\right)$
 - b) Résoudre dans \mathbb{R} : $\cos(x) + \sin(x) \ge 0$
- $\text{3- Montrer que pour tout } x \in \mathbb{R} \setminus \left\{ \frac{\pi}{4} + k\pi; k \in \mathbb{Z} \right\} \text{ on a} : \frac{\cos(2x)}{\sin(2x) 1} = \frac{\sin(x) + \cos(x)}{\sin(x) \cos(x)}$
- $\text{4- Montrer que pour tout } x \in \mathbb{R} \setminus \left\{ \frac{\pi}{4} + k\pi; k \in \mathbb{Z} \right\} \text{ on a : } \frac{\cos(2x)}{\sin(2x) 1} = \cot an \left(x \frac{\pi}{4} \right)$

b-mehdi.jimdo.com

Exercice N° 05:

On considère l'équation (E): $\sin(3x) + \sin(2x) = 0$

- 1- Résoudre l'équation (E) dans \mathbb{R} puis dans $]-\pi,\pi]$.
- 2- a) Montrer que $\sin(3x) = \left[4\cos^2(x) 1\right]\sin(x)$; $\forall x \in \mathbb{R}$.
 - b) Montrer que $\sin(3x) + \sin(2x) = 0 \Leftrightarrow \left[4\cos^2(x) + 2\cos(x) 1\right]\sin(x) = 0$
- 3- Parmi les solutions de (E) quelles sont dans $]-\pi,\pi]$ les solutions de l'équation : $4\cos^2(x)+2\cos(x)-1=0$ dans $]-\pi,\pi]$
- 4- Résoudre dans \mathbb{R} l'équation $4t^2 + 2t 1 = 0$
- 5- En déduire $\cos\left(\frac{2\pi}{5}\right)$ et $\cos\left(\frac{4\pi}{5}\right)$

Exercice N° 06:

1- Montrer que pour tous réels a et b de $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$, on a:

$$\tan(a) + \tan(b) = \frac{\sin(a+b)}{\cos(a)\cos(b)}$$

- 2- Soit $x \in \left[-\frac{\pi}{6}, \frac{\pi}{6} \right]$
- a) Montrer que: $\tan\left(x \frac{\pi}{3}\right) + \tan\left(x + \frac{\pi}{3}\right) = \frac{4\sin(2x)}{2\cos(2x) 1}$
- b) Montrer que : $\cos(x)[2\cos(2x)-1] = \cos(3x)$
- c) En déduire que : $\tan\left(x \frac{\pi}{3}\right) + \tan\left(x\right) + \tan\left(x + \frac{\pi}{3}\right) = 3\tan(3x)$

Exercice N° 07:

Le plan est muni d'un repère orthonormé direct $\left(0,\vec{i},\vec{j}\right)$

On considère un carré OABC de centre S tels que les coordonnées cartésiennes de A et C sont respectivement $(1,\sqrt{3})$ et $(-\sqrt{3},1)$

- 1- Faire une figure.
- 2- Déterminer les coordonnées polaires de A ; C ; B et S
- 3- En déduire $\cos\left(\frac{7\pi}{12}\right)$; $\sin\left(\frac{7\pi}{12}\right)$ et $\cos\left(\frac{\pi}{12}\right)$

Exercice No 08:

Soit
$$f(x) = \sqrt{1 + \sin(2x)} + \sqrt{1 - \sin(2x)}$$
; $x \in \left[0, \frac{\pi}{2}\right]$

Montrer que
$$f(x) = \begin{cases} 2\cos(x) & \text{si } x \in \left[0, \frac{\pi}{4}\right] \\ 2\sin(x) & \text{si } x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \end{cases}$$

b-mehdi.jimdo.com

Exercice N° 09:

Soit M(x, y) un point du plan orienté \mathscr{D} avec $x = \cos(\theta) + \sin(\theta)$ et $y = \sin(\theta) - \cos(\theta)$.

- 1/ Quel est l'ensemble ($\mathscr C$) des points M?.
- 2/a) M étant un point de (\mathscr{E}) ; Vérifier que $|x-y| \le 2$.
 - b) En déduire qu'il existe $\beta \in \mathbb{R}$ tel que $x y = 2\cos(\beta)$.
 - 3- a) Montrer que $(x+y)^2 + (x-y)^2 = 4$.
 - b) En déduire que $(x+y)^2 = 4\sin^2(\beta)$

Exercice N° 10:

Soit
$$f(x) = \frac{1}{\sin(x)} - \frac{1}{\sin(3x)}$$

- 1- Déterminer D_{t} .
- 2- Montrer que pour tout $x \in D_f$, $f(x) = \frac{2\cos(2x)}{\sin(3x)}$
- 3- a) Montrer que $\frac{1}{\sin\left(\frac{\pi}{2}\right)} \frac{1}{\cos\left(\frac{\pi}{2}\right)} = \frac{\sqrt{2}}{\cos\left(\frac{\pi}{2}\right)}$
 - b) En déduire que $\sin\left(\frac{\pi}{9}\right) = \frac{\sqrt{2-\sqrt{2}}}{2}$ et $\cos\left(\frac{\pi}{9}\right) = \frac{\sqrt{2+\sqrt{2}}}{2}$
- 4- a) Résoudre dans \mathbb{R} puis dans $]0,2\pi]$ l'équation $\cos(x) + (\sqrt{2}-1)\sin(x) = 1$
 - b) Résoudre dans $]0,2\pi]$ l'inéquation $\cos(x) + (\sqrt{2} + 1)\sin(x) \le 1$
- 5- Prouver que $\frac{1}{\sin\left(\frac{3\pi}{7}\right)} + \frac{1}{\sin\left(\frac{2\pi}{7}\right)} = \frac{1}{\sin\left(\frac{\pi}{7}\right)} = \frac{1}{\sin\left(\frac{\pi}{7}\right)}$ Exercice N° II:

Exercice N° I1:
Soit
$$f(x) = \frac{\sin(3x)}{\sin(x)}$$

- 1- Déterminer D_{ι}
- 2- Montrer que pour tout $x \in D_f$, $f(x) = 1 + 2\cos(2x)$
- 3-a) Résoudre dans \mathbb{R} puis dans $]0,2\pi[1]$ équation f(x)=0
 - b) Résoudre dans \mathbb{R} puis dans $]0,2\pi]$ l'inéquation $f(x) \leq 0$
- 4- Calculer $f\left(\frac{\pi}{12}\right)$ et en déduire la valeur de $\sin\left(\frac{\pi}{12}\right)$ et $\cos\left(\frac{\pi}{12}\right)$
- 5- Soit $x_k = \frac{k\pi}{5}$; $k \in \{1; 2; 3; 4\}$; calculer $S = \sum_{k=1}^{4} f(x_k)$ (utiliser 2-).

6- En déduire la valeur de $P = \cos\left(\frac{\pi}{5}\right) - \frac{1}{4\cos\left(\frac{\pi}{5}\right)}$. Trouver alors la valeur de $\cos\left(\frac{\pi}{5}\right)$.

Exercice No 12:

Soient a; b et c trois réels tels que $a+b+c=\pi$

 $\text{Montrer que } \cos \left(a\right) + \cos \left(b\right) + \cos \left(c\right) - 1 = 4 \sin \left(\frac{a}{2}\right) \sin \left(\frac{b}{2}\right) \sin \left(\frac{c}{2}\right)$

Exercice No 13:

Soient A,B et C trois points du plan. On désigne par \widehat{A} une mesure de l'angle $\left(\widehat{\overrightarrow{AB},\overrightarrow{AC}}\right)$,

 \widehat{B} une mesure de l'angle $(\overrightarrow{\overline{BC},\overline{BA}})$ et \widehat{C} une mesure de l'angle $(\overrightarrow{\overline{CA},\overline{CB}})$. On pose :

AB = c, AC = b et BC = a avec a, b et c trois réels strictement positifs.

1- Montrer que:

a)
$$a^2 = b^2 + c^2 - 2bc\cos(\widehat{A})$$

b)
$$b^2 = a^2 + c^2 - 2ac\cos(\widehat{B})$$

c)
$$c^2 = a^2 + b^2 - 2ab\cos(\hat{C})$$

2- Montrer que pour tout triangle ABC rectangle en A, on a: $b = a \sin(\widehat{B})$ et $c = a \sin(\widehat{C})$

3- On désigne par R le rayon du cercle circonscrit à triangle quelconque ABC.

a) Montrer que $a = 2R\sin(\widehat{A})$ (utiliser le point B' diamétralement opposé au point B on examinera trois cas).

b) En déduire que dans tout triangle ABC, on a :

$$\frac{a}{\sin(\widehat{A})} = \frac{b}{\sin(\widehat{B})} = \frac{c}{\sin(\widehat{C})} = 2R \quad \mathbf{0}$$

4- On désigne par S l'aire du triangle ABC.

Montrer que :
$$S = \frac{bc\sin(\widehat{A})}{2} = \frac{abc}{4R}$$

- 5- On désigne par p le périmètre du triangle ABC et par r le rayon du cercle inscrit à ce triangle. Montrer que $S = \frac{pr}{2}$.
- 6- Utiliser **1** pour montrer que :

a)
$$b^2 + c^2 = 2a^2 \Leftrightarrow \sin^2(\widehat{B}) + \sin^2(\widehat{C}) = 2\sin^2(\widehat{A})$$

b)
$$b^2 + c^2 = 2a^2 \Leftrightarrow \cos(2\widehat{B}) + \cos(2\widehat{C}) = 2\cos(2\widehat{A})$$

7- Utiliser $oldsymbol{0}$ pour montrer que la relation $\sin^2(\widehat{A}) = \sin^2(\widehat{B}) + \sin^2(\widehat{C})$ caractérise un triangle rectangle en A.