Définition:

On appelle fonction du second degré (ou trinôme) la fonction f définie sur \mathbb{R} par : $f(x) = ax^2 + bx + c$ avec $a \neq 0$.

L'expression $a x^2 + b x + c$ s'appelle trinôme du second degré.

Forme canonique:

On appelle forme canonique du trinôme $a x^2 + b x + c$ avec $a \neq 0$ l'écriture sous la forme :

$$a\left[\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right]$$
 ou $\Delta=b^2-4ac$; Δ est appelé le discriminant de ax^2+bx+c .

Factorisation du trinôme :

$Si \Delta < 0 \ alors \ le$	$Si \Delta = 0 \ alors$	$Si \Delta > 0 \ alors$			
trinôme	$(b)^2$	2 -	1 -	$b-\sqrt{\Delta}$	$-b + \sqrt{\Delta}$
$ax^2 + bx + cn'est$	$a x^2 + b x + c = a \left(x + \frac{b}{2a} \right)^2$	$a x^2 + b x + c = a$	$a \mid x$	$\frac{1}{2a}$	$\left(x-\frac{1}{2a}\right)$
pas factorisable)
$dans \mathbb{R}$					

Equation du second degré:

Définition:

On appelle racine du trinôme $f(x) = ax^2 + bx + c$ avec $\underline{a \neq 0}$ toute solution quand elle existe de l'équation $ax^2 + bx + c = 0$.

Résolution de l'équation f(x) = 0:

$$a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right] \text{ ou } \Delta = b^2 - 4ac$$

	Racine de $f(x)=0$	Factorisation	Signe de $f(x)$
$\Delta < 0$	N'est pas de solutions dans ${\mathbb R}$	On ne peut pas factoriser	Pour tout $x \in \mathbb{R}$ signe $(f(x)) = signe(a)$
$\Delta = 0$	Une racine double $x_1 = x_2 = -\frac{b}{2a}$	$f(x) = a(x - x_1)^2$	Pour tout $x \in \mathbb{R}(x \neq x_1)$ signe $(f(x)) = \text{signe } (a)$
$\Delta > 0$	A deux racines distincts $x_1 = \frac{-b - \sqrt{\Delta}}{2a} \text{ et } x_2 = \frac{-b + \sqrt{\Delta}}{2a}$	$f(x) = a(x - x_1)(x - x_2)$	Supposons que $x_1 < x_2$ $\Rightarrow signe (f(x)) = signe (a)$ $si \ x \in]-\infty, x_1] \cup [x_2, +\infty[$ $\Rightarrow signe(f(x)) = signe (-a)$ $si \ x \in [x_1, x_2]$

Discriminant réduit :

Soit $\Delta' = b'^2 - ac$ avec $b' = \frac{b}{2}$, on a alors $\Delta = 4\Delta'$

 $ightharpoonup Si \Delta' < 0$ alors l'équation $a x^2 + b x + c = 0$ n'admet pas des solutions dans $\mathbb R$.

 \triangleright Si $\triangle' = 0$ alors l'équation $a x^2 + b x + c = 0$ admet une racine double $x_1 = x_2 = -\frac{b'}{a}$.

 \triangleright Si $\Delta' < 0$ alors l'équation $a x^2 + b x + c = 0$ admet deux racines distincts

$$x_1 = \frac{-b' - \sqrt{\Delta'}}{a} \qquad et \ x_2 = \frac{-b' + \sqrt{\Delta'}}{a} \ .$$

Somme et produit des racines de l'équation $a x^2 + b x + c = 0$:

Dans le cas où $\Delta \ge 0$, on $a: \left| x_1 + x_2 = -\frac{b}{a} \right| et \left| x_1 \times x_2 = \frac{\overline{c}}{a} \right|$

Remarque:

Si
$$a+b+c=0$$
 alors $x_1=1$ et $x_2=\frac{c}{a}$

Si
$$a-b+c=0$$
 alors $x_1 = -1$ et $x_2 = -\frac{c}{a}$

EXERCICE N°1:

Factoriser puis résoudre dans \mathbb{R} les équations suivantes:

(a)
$$(x^2-1)+x+1=0$$

(b)
$$(x-3)(x+5)-(-x+4)(x-3)=0$$

(c) $x^2-2x+1=(x+\sqrt{3})(x-1)$

(c)
$$x^2 - 2x + 1 = (x + \sqrt{3})(x - 1)$$

EXERCICE Nº2:

Résoudre chaque équation après avoir déterminer l'ensemble de définition.

(a)
$$\frac{x-1}{x+1} = 1 - \frac{x}{x-1}$$
; (b) $\frac{2x-1}{2x+3} = \frac{2x+1}{2x-3}$; (c) $\sqrt{x+1} = \sqrt{x-1}$

EXERCICE N°3:

Déterminer le signe des expressions proposées suivant les valeurs de x.

$$f(x) = (x-1)(2x+3)(5-3x)$$
; $g(x) = \frac{-3x+4}{x-1}$; $h(x) = \frac{(x-2)(4-x)}{(x-1)(5x+3)}$

EXERCICE N°4:

Résoudre dans \mathbb{R} les inéquations suivantes :

(a)
$$\frac{x+1}{x^2+5} \le 0$$
 ; (b) $\sqrt{x^2+x+1} < 0$; (c) $|x+1| + |x^2-3| \ge 2$

(d)
$$\frac{x^2 - 6x + 9}{(x+1)(x+3)} \ge 0$$
 ; (e) $|x-1| \ge 3x - 2$; (f) $\sqrt{x+4} \le x$

EXERCICE N°5:

Soit
$$f(x) = |3x - 2| - |-2x + 1|$$

- 1°) Calculer f(0) puis déterminer x pour que f(x) = 0.
- 2°) Ecrire f(x) sans valeur absolue.
- 3°) Résoudre dans \mathbb{R} l'inéquation f(x) < x 1.

EXERCICE N°6:

Soit $(a,x) \in \mathbb{R}^2$

1°) Montrer que
$$x^2 + ax = \left(x + \frac{a}{2}\right)^2 - \frac{a^2}{4}$$
 et $x^2 - ax = \left(x - \frac{a}{2}\right)^2 - \frac{a^2}{4}$

 2°) Factoriser puis résoudre dans \mathbb{R} .

2°) Factoriser puis résoudre dans
$$\mathbb{R}$$
.
(a) $x^2 + 2x - 3 = 0$; (b) $2x^2 + 2x - 3 = 0$; (c) $x^2 - 3x - 5 \le 0$
EXERCICE N°7:

Résoudre dans \mathbb{R}^2 les systèmes suivants :

$$S_1:\begin{cases} x-y=1\\ xy=2 \end{cases}$$
; $S_2:\begin{cases} 2x+3y=12\\ xy=6 \end{cases}$; $S_3:\begin{cases} x^2+y^2=25\\ xy=12 \end{cases}$; $S_4:\begin{cases} x^2+2y^2=6\\ xy=2 \end{cases}$

EXERCICE N°8:

Résoudre dans \mathbb{R} .

(a)
$$x^2 - 6\sqrt{2}x + 2 = 0$$
 ; (b) $-7x^2 + 4x + 46 = 0$; (c) $\left(x + 2\right)^2 + \left(x - \frac{5}{2}\right)^2 = 0$

(d)
$$\frac{6x^2 - 5x - 14}{(x - 2)^2} = 0$$
 ; (e) $x^4 - 3x^2 - 4 = 0$; (f) $12x^2 - x + 1 \le 0$

EXERCICE N°9:

Etudier suivant les valeurs du paramètre réel m le nombre de solutions de l'équation :

$$(E_m): (m-2)x^2 + 2(m+1)x + 5m + 5 = 0$$

EXERCICE Nº10:

Résoudre et discuter suivant les valeurs du paramètre réel m l'inéquation suivante :

$$(I_m): (m-3)x^2-2(m+1)x+2m-4>0$$

EXERCICE N°11: Soit l'équation $3x^2 + 5x - 7 = 0$

Sans chercher les solutions x_1 et x_2 de cette équation, calculer:

(a)
$$x_1^2 + x_2^2$$
; (b) $\frac{x_1}{x_2} + \frac{x_2}{x_1}$; (c) $\frac{1}{x_1} + \frac{1}{x_2}$; (d) $x_1^3 + x_2^3$

Soit l'équation (E_m) : $3x^2 + (3m+2)x - 5 = 0$ où $m \in \mathbb{R}$.

- 1°) Justifier que pour tout $m \in \mathbb{R}$ l'équation (E_m) admet deux racines distinctes.
- 2°) Déterminer m pour que (-1) soit une solution de (E_m) .
- 3°) Existe-t-il $m \in \mathbb{R}$ tel que (E_m) admet deux racines de somme (-2)?
- 4°) Existe-t-il $m \in \mathbb{R}$ tel que (E_m) admet deux racines opposées ?