Lycée Secondaire Devoir de Contrôle N°05 Durée: 01 h

Classe:

2 SC 3

EXERCICE N° 01 (4 pts):

Répondre par vrai ou faux en justifiant votre réponse :

 $1/\tilde{\mathrm{Soient}}\ f$ et g deux fonctions définies sur $\mathbb R$ tel que :

- * f est paire et g est impaire.
- * f(1) = 2 et g(1) = 2

Soit S la fonction définie sur \mathbb{R} par : S(x) = f(x) + g(x), donc on a

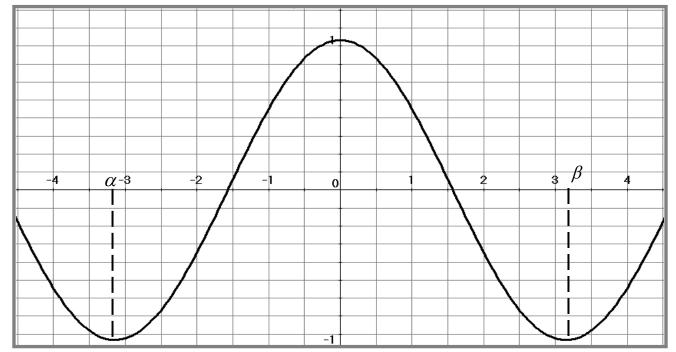
 \triangleright S est une fonction impaire

(2 pts)

2/ Soit $f(x) = x^2 + 1$; $x \in [-5, 5]$, donc on a:

f est une fonction paire

(1 pt)


3/ soit g une fonction décroissante sur un intervalle I, donc on a :

 $\triangleright g(x) \le 0$ pour tout $x \in I$.

(1 pt)

EXERCICE N° 02 (6 pts):

La courbe si dessous est la représentation graphique d'une fonction f.

1/ Déterminer D_f (le domaine de définition de f)

(2 pts)

2/ Etudier les variations de f sur $[\alpha, \beta]$.

(2 pts)

3/ compare f(2,5) et f(-2).

(2 pts)

b-mehdi.jimdo.com

EXERCICE N° 03 (10 pts):

Soit (ξ) un cercle de diamètre [AB] et de rayon 1. Soit M un point de (ξ) et C le projeté orthogonal de M sur [AB].

On pose $\widehat{MAB} = \alpha$ et O = A * B.

1/ Montrer que $\cos(\alpha) = \frac{AC}{AM} = \frac{AM}{AB}$. (2,5 pts)

2/a) Montre que si $\alpha \in \left[0, \frac{\pi}{4} \mid \text{alors } AC = 1 + \cos(2\alpha).\right]$ (2,5 pts)

b)Exprimer $\cos^2(\alpha)$ en fonction de $\cos(2\alpha)$. (2,5 pts)

3/ En déduire la valeur exacte de $\cos\left(\frac{\pi}{12}\right)$.

Bon Travail ... 🗷