Fiche de cours POLYNOMES

2ème info

MATHS AU LYCEE *** ALI ANIR Site Web: http://maths-akir.midiblogs.com/

Définition

Soient a_0 , a,..., a_n des réels

La fonction f définie sur R par $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ est appelée fonction polynôme.

Les réels $a_0, a, ..., a_n$ sont appelés les coefficients de la fonction polynôme.

Degré d'un polynôme

*)On admet que tout polynôme P a une écriture unique de la forme $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ avec $a_n \neq 0$.

L'entier n est appelé le degré du polynôme P, on écrit $d^{\circ}(P) = n$

On convient que le polynôme nul n'a pas de degré.

*)On dit que le polynôme P est factorisable par le polynôme Q s'îl existe un polynôme R tel que pour tout réel x , $P(x) = Q(x) \times R(x)$

*) Racine d'un polynôme: On dit qu'un réel α est une racine ou un zéro d'un polynôme f si $f(\alpha) = 0$

***Soit f un polynôme de degré n.

Pour tout $n \ge 1$, si α est une racine de f alors:

*)f est factorisable par x - a

*)Il existe un polynome g de dgré (n -1) tel que $f(x) = (x - \alpha)Q(x)$

***Soit f un polynôme de degré n.

Pour tout $n \ge 2$, si α et β sont deux racines de β alors:

*) f est factorisable par $(x-\alpha)(x-\beta)$

*)Il existe un polynôme g de degré (n $(x) = (x - \alpha)(x - \beta)Q(x)$

***Soit f un polynôme de degré n

Pour tout $n \ge k$, si $\alpha_1, \alpha_2, \dots$ sont des racines de f alors :

*) f est factorisable par $(x-a_1)(x-a_2)...(x-a_k)$

*)Il existe un polynôme g de degré (n -k) tel que $f(x) = (x - \alpha_1)(x - \alpha_2)...(x - \alpha_k)Q(x)$